
Prowess Consulting conducted research and testing to determine whether the  
Intel or Qualcomm SDK can help build the best pipeline for large language model 

deployment on Qualcomm® Snapdragon® Arm64–based SoCs and Intel® processors.

Which Toolkit Provides the Best 
Optimization for Large Language Models?

Executive Summary
Developers recognize the critical need for efficient AI solutions 
across diverse computing environments. As enterprises race to 
deploy AI projects, developers can gain a competitive edge by 
leveraging the AI and machine learning (ML) tools in software 
development kits (SDKs) to optimize large language models 
(LLMs) that power chatbots, virtual assistants, and other AI 
systems. Hardware-specific SDKs are designed to enable 
seamless integration with on-device hardware, enhancing model 
execution and accelerating neural network inference to improve 
the model’s ability to apply patterns to new input.

With the transition to AI PCs, developers face important 
hardware-optimization choices for performance and efficiency. 
For example, they can build AI applications on devices powered 
by Intel® Core™ Ultra processors with hybrid architectures—
using both Performance-cores (P-cores) and Efficient-cores 
(E-cores)—or on devices powered by Qualcomm® Snapdragon® 
Arm64 systems on a chip (SoCs), which are often used for 
mobile devices. Prowess Consulting tested the Intel® OpenVINO™ 
toolkit and the Qualcomm® AI Engine Direct SDK on Dell™ XPS™ 
13 AI PCs to determine the better choice for developers. The 
Intel OpenVINO toolkit earned higher scores in target hardware 
support, platform compatibility, features, ease of use, and other 
factors. Table 1 highlights our findings.

Table 1 | SDK scorecard: The Intel® OpenVINO™ toolkit versus the Qualcomm® AI Engine Direct SDK (five-star rating system: 1 [poor] to 5 [excellent])

Software Development Toolkits Target Hardware
Platform 
Compatibility

Model 
Conversion

Inference
Community 
Support

Intel® Distribution of 
OpenVINO™ toolkit
Qualcomm® AI Engine  
Direct SDK
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The AI Technology Challenge
Companies are investing in AI development with various degrees 
of success. One-third of generative AI (GenAI) projects fail to 
make it beyond the proof-of-concept stage, according to Gartner 
research, due to high costs, poor data quality, unclear business 
goals, and risk issues.1 More industries are looking at LLMs to 
train smaller models and to use retrieval augmented generation 
(RAG) for specific tasks. As the push to integrate AI capabilities 
into enterprise systems fundamentally redefines line of business 
applications, enterprise development teams can take advantage 
of AI-enhanced hardware and software to automate tasks and 
improve their development processes.

Initially targeted at commercial markets, AI PCs are high-
performing computers designed with neural processing units 
(NPUs), along with CPUs and GPUs, to allow machine learning 
and other AI functions to be performed locally on a device. The 
first Windows® AI PCs were previewed at the Microsoft Build 
2023 conference.2 These AI PCs featured NPUs, GPUs, and CPUs 
to power their AI models and the built-in Microsoft® Copilot® 
AI assistant. These systems began shipping in 2023 (Intel® 
processor–based AI PCs) and 2024 (Windows Copilot+ PCs with 
Qualcomm® Snapdragon® processors) from OEM partners such 
as Acer, ASUS, Dell Technologies, HP, Lenovo, and Samsung.3

By 2028, the majority of consumer PCs will support AI 
acceleration hardware, according to Gartner research.4 These 
AI-enhanced systems provide developers with improved 
performance, reduced latency, and stronger data privacy and 
security. Additional benefits include longer battery life and lower 
costs compared to cloud-based AI processing.5 This contrasts 
with standard PCs, which depend on cloud-based infrastructure 
to run AI applications due to the extensive memory and 
computational requirements of AI workloads, particularly those 
involving LLMs.

In the rapidly evolving AI landscape, most developers rely on 
SDKs to optimize, deploy and integrate LLMs that drive core 
functionality in AI-powered applications. Hardware-specific 
SDKs are designed to enable developers to build software that 
interfaces with on-device hardware, optimizing model execution 
and inference in neural networks. To make inference faster and 
more efficient, AI developers often use methods like quantization, 
which can improve performance and reduce memory and power 

consumption on the device. Quantization is a technique that 
converts a model’s weights and activations from higher precision 
to lower precision (e.g., floating point to integer) during or after 
training. This smaller numerical footprint can speed up inference, 
though reduced precision may affect accuracy. With hardware-
optimized tools, software developers can make use of an AI PC’s 
hardware to enhance performance and resource efficiency.

As AI PCs become more prevalent, developers face hardware-
optimization choices, such as whether to build AI applications 
on devices powered by Intel Core Ultra processors with hybrid 
architectures—using both P-cores and E-cores—or on systems 
powered by Qualcomm Snapdragon Arm64 SoCs. To help AI 
developers determine the right architecture for their needs, 
Prowess Consulting tested the Intel OpenVINO toolkit and 
the Qualcomm AI Engine Direct SDK on Dell XPS 13 AI PCs 
to see which tool came out on top. Specifically, we evaluated 
the target hardware, platform compatibility, features, ease of 
use, documentation, community support, open source versus 
proprietary tradeoffs, required skillsets, and costs.

Working with Local LLMs
Companies like Microsoft, Intel, Meta, and others are working 
to create open platforms for AI development. With the right 
hardware, AI developers can use open-source tools like Ollama or 
LM Studio to run models locally.

Models are getting better, faster, and in some cases smaller. 
The open-source Llama 3.2-3B (3 billion parameter) model from 
Meta AI was released in September 2024 for developers and 
researchers seeking pretrained models with low latency and 
low cost for enterprise use cases. It is a pretrained transformer6 
model for natural language processing (NLP), designed for neural 
networks, and it includes multilingual text and code capabilities. 
The 9B (9 billion parameter) and 11B (11 billion parameter) 
versions of the model are multimodal and can process both text 
and images.

Running models locally reduces dependency on cloud APIs, 
which often charge based on usage (for example, per 1,000 
tokens). This can significantly cut costs, especially for high-
volume or long-running projects.

Primary drivers influencing the SDK ratings in Table 1:
•	 Less availability of Qualcomm® Snapdragon® X processor–based systems compared to Intel® Core™ Ultra processor–

based systems, signaling slower adoption of Arm® architectures and software compatibility issues
•	 The Qualcomm® AI Engine Direct SDK offers enough features to run full AI pipelines, but some tools have limited 

functionality, particularly when working with LLMs
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Local customization of models for specific use cases or domains, such as healthcare, legal, finance, and customer service, can 
improve performance through faster iterations (with no API calls) and improved output accuracy. Organizations with high security and 
compliance requirements can also safeguard sensitive data and maintain privacy by running models offline.

Open-source AI tools offer flexibility and customization, but developers may need technical experience to optimize model 
performance and avoid vulnerabilities that could expose sensitive data. At the same time, tools like Intel OpenVINO allow developers 
to benefit from an active open-source community that contributes to models and frameworks—offering greater transparency into 
source code and project development. Companies including Amazon, Google (Alphabet), IBM, Intel, Microsoft, and Qualcomm 
collaborate with Hugging Face®, an open-source repository, to ensure that open-source models are accessible and safe to use in their 
environments.

In contrast, proprietary solutions like Qualcomm AI Engine Direct SDK may limit customization and come at a higher cost. However, 
they often provide access to pretrained, validated models along with dedicated vendor support. See Table 2 for more on the features 
and differences between the Intel OpenVINO toolkit and the Qualcomm AI Engine Direct SDK.

Table 2 | Tools face-off: The Intel® OpenVINO™ toolkit versus the Qualcomm® AI Engine Direct SDK

SDK Intel® Distribution of OpenVINO™ toolkit
Qualcomm® AI Engine Direct  
(Qualcomm Neural Network [QNN])

Platform 
support

•	 Open-source tools and high-level APIs
•	 C/C++ for low-level integrations, Python®, and  

Node.js®

•	 Suite of low-level control and optimization tools
•	 Unified API and core-specific libraries
•	 C/C++ for low-level integrations, Python for AI, and 

Java®

•	 Development tools and environments (Qualcomm 
AI Hub, Qualcomm® Snapdragon® LLVM compiler, 
Windows®, Xcode® (DirectML), Ubuntu® (Linux®) 
Android™, and Anaconda®)

Hardware 
acceleration

•	 Intel® x86-64 architecture (CPUs), Intel integrated 
and discrete GPUs, Intel NPUs

•	 Arm® processors (CPUs) since February 2025

•	 Qualcomm Snapdragon hardware, including CPUs, 
Qualcomm® Adreno® GPUs and Qualcomm® 
Hexagon™ NPUs

•	 Snapdragon SoCs built on Arm-based architectures
•	 Windows and Arm CPU-exclusive agreement ended 

in December 2024

Model 
handling

•	 Model downloader (Open Model Zoo)
•	 Model converter (OpenVINO intermediate 

representation format)
•	 Model quantizer
•	 Neural Network Compression Framework7 (NNCF), 

training and post-training algorithms for optimizing 
inference in OpenVINO

•	 Optimum Intel CLI

Conversion tools for AI models and frameworks 
(including TensorFlow™, PyTorch®, and the ONNX® model 
format)

Deployment
Flexible deployment—write once, deploy anywhere, on 
device and with cloud AI

Deployment on device or in the cloud with AI hub

Licensing Free for commercial use with Apache® License 2.0
Part of Qualcomm’s AI Stack licensing, automatic upon 
SDK download, exact terms depend on use cases

Security

•	 Model encryption with third-party tools
•	 OpenVINO Security Add-on (OVSA) for access 

control
•	 Datumaro for encryption of computer vision 

datasets

Relies on hardware-level security features in the 
Snapdragon security platform

Other
Converged neural network (CNN), image classification, 
object detection, and face recognition

Doesn’t have the same history of apps and tools or depth 
of experience for the developer community
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Prowess Consulting’s Research Approach
We conducted extensive research and testing to evaluate the AI development process in the Intel OpenVINO toolkit versus Qualcomm AI 
Engine Direct SDK. Our focus was on optimizing LLMs with Intel Core Ultra processors and Qualcomm Snapdragon X Elite processors 
on Windows laptops and PCs, comparing model conversion, inference, and deployment. To represent a standard GenAI workload, we 
selected Llama 3.2-3B to develop a chatbot. Llama is one of the most widely adopted open-source models.8

Our development environment for the OpenVINO toolkit is shown in Figure 1. When we configured the OpenVINO Runtime environment, 
the OpenVINO model server build could not be completed with the latest version of Python® (3.13), so we reverted to Python version 
3.10 and no further dependency issues were triggered. We also found that the OpenVINO toolkit documentation pointed to older tutorial 
versions, which involved more Python code than was needed with the OpenVINO 2025.1 toolkit, which provides a streamlined approach.

System Under Test: Required Setup and Applications

Dell™ XPS™ 13 9350 with 
Intel® Core™ Ultra 7 processor 256V

Windows® 11

Intel® Distribution of OpenVINO™ toolkit

Microsoft® Visual Studio® Code

Git for Windows

Python® 3.10.11

System Under Test: Required Setup and Applications

Dell™ XPS™ 13 9345 with 
Qualcomm® Snapdragon® X Elite X1E-80-100

Windows® 11 for Arm64

Python 3.10.11 (x64)

QNN and Qualcomm AI Runtime

Microsoft® Visual Studio® Code

Git for Windows

Qualcomm AI Hub package

Figure 1 | AI PC development environment: the Intel® OpenVINO™ toolkit

Figure 2 | AI PC development environment: Qualcomm® AI Engine Direct SDK

A Hugging Face account is required to create login tokens and access the Llama3.2-3B models. Hugging Face is an open-source 
community with more than 300,000 models and datasets; it serves a similar role to GitHub, but for the ML ecosystem. We used 
the Hugging Face command-line interface (CLI) to download Llama 3.2–3B from the Hugging Face model repository to the Intel 
OpenVINO toolkit on the Dell AI PC.

Our test environment for the Dell XPS 13 9345 laptop with a Qualcomm Snapdragon X Elite X1E-80-100 processor, shown in Figure 
2, involved a similar setup as the Intel configuration, with a few notable differences. We used Qualcomm AI Engine Direct SDK—often 
called QNN in the software documentation and source code—in addition to the Qualcomm AI Hub package, which is required for on-
device model optimization and deployment. Qualcomm AI Hub documentation is tailored for small language models (SLMs), which 
made working with an LLM more challenging. Small language models typically contain fewer than 1 billion parameters and require 
less computational power, enabling deployment on resource-constrained hardware.9
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Intel® OpenVINO™ Toolkit 
Pipeline Overview

Configure the OpenVINO toolkit 
environment.

Download the Hugging Face® model.

Convert the Hugging Face models to FP16, 
INT8, INT4, and NPU-specific INT4.

Run inference on each model, including the 
original Hugging Face PyTorch® model.

Benchmark each model by targeting the 
CPU (by default), GPU and NPU.

LLM Build with the Intel OpenVINO Toolkit
With Intel OpenVINO toolkit, we were able to run optimized versions of the 
meta-llama/Llama 3.2–3B models locally on the Dell XPS 13 9350 laptop 
with the Intel Core Ultra 7 processor 256V running Windows 11 without 
relying on cloud services. Llama 3.2–3B, developed by Meta AI, is an 
open-source text-in/text-out model that is free for commercial use. It’s a 
pretrained transformer model built with data from billions of inputs from the 
internet, with the training data completed in 2023.

Intel has partnered with Hugging Face to advance open AI development, 
offering tools like Optimum Intel to optimize models for Intel hardware. 
We used the Optimum Intel CLI to simplify weight compression by 
converting the model for Intel OpenVINO toolkit from high-precision to 
FP16 (16-bit floating point) format, optimizing inference with minimal 
accuracy degradation. We applied quantization to reduce precision to 
fixed-point integers—8-bit (INT8) and 4-bit (INT4)—to reduce model size 
and increase execution efficiency. Quantization at this level might involve 
accuracy tradeoffs.

Once we had validated the models, we configured an Intel GenAI benchmarking tool to run against the original Hugging Face 
PyTorch® model and all the converted Intel OpenVINO models. We were able to benchmark each model by targeting the CPU (by 
default), the GPU, and the NPU. For the NPU hardware accelerator, we used NPU-specific INT4 for quantized inference.

In order to optimize the LLM running locally on the AI PC, we used the Optimum Intel CLI to convert the model to the Intel OpenVINO 
IR format and run it on the Intel architecture. With the Optimum Intel interface, 8-bit weight compression of models over 1 billion 
parameters is enabled by default. We also used it to convert the LLM to INT4 quantization for optimal performance on the NPU.

We used Intel’s extension for the open-source, deep learning (DL) framework PyTorch and the OpenVINO toolkit to help optimize 
inference on Intel hardware (including CPUs and GPUs). We were able to run inference on each model, including the original Hugging 
Face PyTorch model.

Overall, we found a streamlined process using the Intel OpenVINO toolkit 2025.1 runtime. The steps for model conversion were 
straightforward, with minimal programming required for the Hugging Face and Optimum Intel CLI tools. Despite a few challenges with 
the Python code and data shapes, we were able to perform quantization and run inference. See Table 2 for more information about 
Prowess Consulting’s evaluation of the Intel OpenVINO toolkit.

The Qualcomm AI Hub source-model preparation process required tracing the LLM, recording the operations it performed on 
representative data and converting those statistics into a static computation graph. This was necessary in order to save the model as 
TorchScript and to then export it to ONNX®, or Open Neural Network Exchange, an open-source format for ML models that enables 
models trained in one format to be used in other frameworks and environments. These steps proved difficult and required custom 
Python code to complete.

We found the Intel OpenVINO toolkit’s runtime to be exponentially easier to work with than the Qualcomm AI Engine Direct SDK, 
especially for LLMs. With Intel OpenVINO toolkit, a developer can download very large models, export to the OpenVINO runtime, 
perform quantization to INT8 and INT4, and target the desired hardware to be run against (CPU, GPU, and NPU). Much of this 
process has been streamlined and can be executed via a CLI with minimal programming. While the Qualcomm AI Engine Direct SDK 
provides sufficient features to run full AI pipelines, some tools are still in beta, and others have limited capabilities—especially when 
manipulating LLMs.

Comparison of Intel® OpenVINO™ Toolkit and QNN Development Results
To highlight the differences between the AI PC development scenarios, we documented the implementation steps and development 
tasks to get the model operational (see the Appendix) and compiled and executed the code in the Intel OpenVINO toolkit and QNN 
runtimes. We put these tools to the test and rated the challenges of using the Qualcomm AI Engine Direct SDK compared to Intel 
OpenVINO toolkit.
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Qualcomm® AI Engine 
Direct SDK Pipeline 
Overview

Configure the QNN environment.

Download the Hugging Face® model.

Run Python® code to trace the model to 
TorchScript.

Convert the TorchScript model to an 
ONNX® format.

Compile the ONNX model through the 
Qualcomm AI Hub.

Attempt INT8 quantization to reduce 
model size.

Developed by Google and released as an open-source project in 2008, Protobuf™ data interchange format is a 
language- and platform-neutral mechanism for serializing and deserializing complex data structures (objects) in a 

transmissible format (bytes) for persistence and storage.

Roadblocks with Qualcomm
When we attempted to download the Llama 3.2–3B language model from 
the Hugging Face repository and run it locally without cloud services on 
the Dell XPS 13 9345 laptop with a Qualcomm Snapdragon X Elite  
X1E-80-100 processor, we were able to accomplish some tasks, but we 
ran into roadblocks on others.

We faced some challenges in our development environment setup, in part 
because some of the AI developer tools for AI-enhanced PCs with Copilot 
and Snapdragon X Elite processors are still not fully optimized for Arm 
architecture. At the time of our research, Python for Arm, which now runs 
natively in Windows on Arm, does not currently support building or installing 
the required Qualcomm AI Hub dependencies.

As a workaround, we were able to use an x64 version of Python, supported 
by x86-64 emulation on Windows 11, which is slower and less compatible. 
(Python 3.11.0, released in October 2022, added support for Windows  
on Arm.)

All Hugging Face Llama 3.2 models are based on the PyTorch format, 
an open-source ML framework developed by Meta AI. Most models are 
compatible with multiple frameworks and interoperability tools, such as the 
ONNX format and TensorFlow™ framework.

We converted the PyTorch model into the TorchScript format—an intermediate representation that supports a subset of Python—to 
enable execution in high-performance environments, such as neural networks, without relying on standard Python dependencies.

Several workarounds were required to successfully convert the TorchScript model to ONNX format and generate a valid ONNX model 
file. We compiled the ONNX model through the Qualcomm AI Hub, targeting the Snapdragon X Elite compute reference device (CRD). 
Compiling the code through the AI Hub required refactoring the model into separate .onnx and .data files to work around the 2 GB 
message size limitation of Google Protocol Buffers (Protobuf™).

To compile the model for inference to hardware-accelerated platforms, we needed to generate separate ONNX and associated  
data files.
•	 The ONNX file encodes the model’s computation graph—including layers, data flow, and tensor dimensions.
•	 The associated data files store the trained weights and numerical tensors needed for runtime inference.

Maintaining a separation between the computation graph (ONNX) and the model’s parameters—weights and biases—enables modular 
updates to either component without retraining or re-exporting the entire model. It also contributes to efficient file size management, 
as the ONNX file is considerably smaller than the data files, in addition to meeting platform requirements such as memory usage, 
storage size, and power consumption for compiler optimization.

AI PCs such as the Dell XPS 13 9345 laptop with the Qualcomm Snapdragon X Elite X1E-80-100 processor are designed to accelerate 
quantized models. The enhanced AI PCs, combined with hardware-specific software tools, can make the models faster and more 
efficient by supporting the compressed model size, speeding up tensor computation, and using less memory.
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We were not able to perform quantization on the LLM using the Qualcomm tools and the Snapdragon X Elite Hexagon NPU, which 
is designed to optimize inference on 8-bit integer (INT8) quantized models. Despite significant time spent on the process, we 
consistently ran into shape errors and weight issues and were unable to achieve successful quantization. Several failed attempts 
returned “Internal quantizer” errors. We reached out to Qualcomm, and the company confirmed a software bug and said they have 
plans to fix it. (At the time of our research, AI Hub Quantization was still in beta.)10

We could build the LLM with Qualcomm’s Gen AI Inference Extensions (GENIE), designed for AI acceleration on the NPU. In this case, 
the model was already optimized, which bypassed a large portion of our testing. Qualcomm’s GENIE is integrated with the Qualcomm 
AI Engine Direct SDK. See Table 3 for more on Prowess Consulting’s evaluation of the Qualcomm AI Engine Direct SDK and the Intel 
OpenVINO toolkit.

Table 3 | Rating the AI PC developer experience: The Intel® OpenVINO™ toolkit versus the Qualcomm® AI Engine Direct SDK (five-star rating system: 1 [poor]  
	 to 5 [excellent])

Evaluation Criteria Intel® OpenVINO™ 
Qualcomm® AI 
Engine Direct SDK 

Notes

Target hardware
Less availability of Qualcomm® Snapdragon® processor–based 
systems compared to Intel®-based systems; requires Windows® 
on Arm®

Platform compatibility

Intel® OpenVINO™ toolkit model does not complete a build 
with Python® 3.13 (the latest version); reverted to Python 3.10. 
In Qualcomm, Python® for Arm is native but fails to build the 
required QNN dependencies; must run Python 64-bit

Features
Qualcomm provides enough features to run full AI pipelines, 
but some are still in beta, and others have limited capabilities, 
especially when manipulating LLMs

Model conversion

Optimum Intel simplifies model conversion with a single CLI 
command. Qualcomm required advanced custom Python code 
to convert from PyTorch® to TorchScript and ultimately to the 
ONNX® model format

Quantization Failed

Converted Hugging Face® Models to FP16, INT8, INT4, and NPU-
specific INT4 in OpenVINO. Internal quantizer error in Qualcomm 
(Qualcomm confirmed this is a bug on the AI Hub side and will 
deliver a fix)

Inference

Only a few lines of Python code needed for chatbot inference 
in OpenVINO. Able to run basic inference in Qualcomm but 
failed to submit an inference job to the AI Hub; “object is not 
subscriptable” error

Performance/benchmarking N/A

Used OpenVINO GenAI benchmarking tool to provide latency 
performance data against all models tested, including 
the original PyTorch model. N/A for Qualcomm given the 
quantization failure

Ease of use

Tracing the model (required by Qualcomm’s AI Hub) proved 
difficult, resolved with custom Python code. Compiling the 
model through the AI Hub requires refactoring the model to 
address a Google Protobuf™ 2 GB size limitation

Documentation Qualcomm’s AI Hub documentation is primarily for SLMs; 
complex code required for interacting with LLMs is not provided

Community support

Vast open-source community for OpenVINO, including support 
and examples from Stack Overflow, GitHub, Reddit, and Quora. 
There is not a large community presence for the Qualcomm 
AI Hub environment, requiring developers to reach out to 
Qualcomm directly.

Technical proficiency 
required

Manipulating LLMs within the QNN environment is not for 
beginner developers; advanced Python programming techniques 
are required

Overall score

Intel OpenVINO 2025.1 provides a more streamlined approach. 
Qualcomm AI Engine Direct SDK works as a proof of concept for 
Arm-related model manipulation, but is not practical in real-world 
scenarios, especially when interacting with LLMs
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Making Models Smaller
Why does quantization matter for LLMs in ML? Quantization is a technique to convert the model’s weights and activations from 
higher precision to lower precision (for example, from floating point to integer) during the training or post-training phase with minimal 
accuracy loss. This smaller numerical footprint can speed up inference. It also reduces power consumption, memory bandwidth, and 
cost—allowing hardware such as CPUs and GPUs to handle models whose parameters increasingly represent billions of values. 

Common techniques for performing post-training quantization at different stages of the model deployment pipeline include 
static, dynamic, and quantization-aware training. In static quantization, which is used after model training and before deployment, 
quantization parameters—such as optimal scaling factors for each layer—are determined by running the model through a calibration 
phase using a representative dataset before inference. Static quantization is often used when deploying models on edge devices.

In dynamic quantization, only the model’s weights are reduced to lower-precision numbers (that is, integers) before inference. The 
activations—the floating-point outputs from layers as data flows through the network—are quantized on the fly during inference. 
Dynamic quantization is often applied to pretrained models, converting them into quantized versions prior to deployment. For 
applications where any accuracy loss is unacceptable, such as medical imaging, quantization-aware training (QAT) is sometimes 
used. QAT simulates quantization during training, using the quantize/dequantize (QDQ) format, by inserting QDQ nodes around 
tensors to mimic quantization. This approach is supported by the ONNX format, PyTorch framework, and NVIDIA® TensorRT™ SDK, 
and it allows flexibility by enabling the neural network to learn how to operate during model training and inference.

Post-training quantization reduces a model’s computation and memory footprint by converting the weights and activations of an 
LLM from higher precision formats (FP32, FP16) to lower precision formats (INT8, INT4). This transformation is performed after 
training and does not require access to the original training data or retraining the model. This method can reduce model size without 
significant accuracy loss and improve inference efficiency. The steps to convert a pre-trained floating-point model to a quantized 
version with lower precision are shown in Figure 3. 

Weights Activations

Convolution

x
0.1 0.2

0.2 0.1

0.3 0.4

0.2 0.5

FP32 FP32

Weights

Activations

Convolution

x
1 2

2 1

3 4

2 6

FP32 INT8

FP32

Quantization

Quantize

Figure 3 | This diagram illustrates the workflow for post-training quantization. In this example, the process converts an LLM’s weights and activations from a higher  
	 precision format (FP32) to a lower precision format (INT8), reducing the model size and improving inference efficiency on AI acceleration hardware with limited  
	 impact on accuracy, depending on the model.11 

It is important to ensure that the target hardware supports the chosen quantization method. Some CPUs and GPUs are optimized for 
FP64, FP32, or lower precisions such as FP16 and BFloat16 (BF16). With AI and ML, more hardware platforms are being optimized 
to support FP16 (half-precision) or integer-level quantization operations. Quantization techniques are particularly critical for LLMs. 
Beyond improving inference speed, they can significantly reduce infrastructure demands and power consumption, making them vital 
for scalable and efficient model deployment.
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Key Findings
To help developers build AI models and applications locally on 
the best architecture, we conducted a comparative evaluation of 
the Intel OpenVINO toolkit and the Qualcomm AI Engine Direct 
SDK on Dell XPS 13 AI PCs equipped with dedicated NPUs 
and integrated AI accelerators. Our analysis focused on real-
world inference workloads and end-to-end model-development 
pipelines. The Intel OpenVINO toolkit earned higher scores in 
target hardware support, platform compatibility, features (model 
optimization, quantization, and deployment tooling), ease of use, 
quality and depth of documentation, level of community and 
vendor support, licensing models (open source), and required 
technical proficiency.

Based on our testing and research, we found the Intel OpenVINO 
toolkit to be the better choice for most users because it offers:
•	 AI-enhanced performance and efficiency: It is built to fully 

leverage Intel Core Ultra processors with a dedicated NPU, 
alongside GPU and CPU acceleration.

•	 Streamlined workflow: It provides integrated tools for model 
conversion, quantization, and deployment.

•	 Broad compatibility: It delivers a mature development 
platform that is well supported on Intel Core Ultra 
processors and capable of running smaller AI tasks on 
previous-generation Intel processors.

•	 Ease of use for new developers: It provides a streamlined 
process with Optimum Intel and related tools, with no heavy 
coding required.

•	 Security and privacy: On-device processing and local AI 
model inferencing reduce the risks associated with sensitive 
data in the cloud.

•	 Strong community backing: It accommodates open-source 
solutions with active developer support.

The Qualcomm AI Engine Direct SDK is designed to offer the best 
tooling for AI optimization on Qualcomm Snapdragon hardware. 
However, Prowess Consulting’s research and testing found 
that using LLMs meant finding numerous workarounds for the 
Qualcomm QNN SDK, because of its incomplete functionality. 
(At the time of this research, AI Hub Quantization was still in beta 
and had known bugs.) While a smaller model could potentially 
complete the quantization process, the external weights and 
QDQ serialization bug prevent that on large models.

In today’s competitive market, choosing the right LLMs for your 
applications isn’t just important—it’s a strategic advantage. The 
Intel OpenVINO toolkit stands out with broader deployment 
across Intel-based AI PCs, giving developers the freedom and 
flexibility to build without limitations. 

This is especially true for developers targeting a large market 
of deployed systems and supporting a broad range of 
models. Released in 2018, Intel OpenVINO began expanding 
its capabilities to include voice and NLP in 2019. Since the 
December 2023 release of Intel Core Ultra Series 1 processors, 
which introduced a dedicated NPU, the Intel OpenVINO toolkit 
has focused on the demand for AI acceleration and faster 
inference of LLMs.

As the transition to AI and ML expands across industries, 
developers will have an increasingly wide array of tools and 
hardware to choose from. AI PCs equipped with hardware-
specific SDKs like the Intel OpenVINO toolkit are poised to set the 
standard for AI innovation and drive the success of projects—
today and in the years ahead. 

Appendix
The following pipelines outline the complete workflows for developing and optimizing AI applications powered by LLMs using the Intel 
OpenVINO toolkit and the Qualcomm AI Engine Direct SDK.

Intel OpenVINO toolkit pipeline:
1.	 Download and install the following applications:

a.	 Python 3.10.11 (64-bit)
i.	  www.python.org/downloads/release/python-31011/ 

b.	 Microsoft® Visual Studio® Code
i.	  https://code.visualstudio.com/download 

c.	 Git for Windows
i.	  https://gitforwindows.org/ 

2.	 Configure a Python virtual environment.
3.	 Install required dependencies:

a.	 OpenVINO 2025.1.0
b.	 Neural Network Compression Framework (NNCF)
c.	 Optimum Intel
d.	 OpenVINO tokenizers
e.	 OpenVINO Genai
f.	 Diffusers
g.	 Librosa

https://www.python.org/downloads/release/python-31011/
https://code.visualstudio.com/download
https://gitforwindows.org/
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h.	 Hugging Face Hub
i.	 Auto-GPTQ

4.	 Log in to https://huggingface.co/login.
5.	 Gain access to the model under test at https://huggingface.co/meta-llama/Llama-3.2-3B.
6.	 Create a Hugging Face access token.
7.	 Use the access token with the Hugging Face CLI.
8.	 Download the meta-Llama/Llama-3.2-3B model with the Hugging Face CLI.
9.	 Convert the model to INT8, INT4, and INT4 for the NPU.
10.	 Launch Visual Studio Code and run inference on the model using the following example code:

Import openvino_genai as ov_genai

model_path = “metallama_INT8”

pipe=ov.genai.LLMPipeline(model_path, “GPU) # Change to NPU or leave blank to run on CPU.

print(pipe.generate(“What is generative AI?, max_new_token=100))

11.	 Clone the GenAI LLM benchmark with Git.
a.	  https://github.com/openvinotoolkit/openvino.genai 

12.	 Benchmark each model, including the original, for comparison using the following example code:
python .\benchmark.py -m C:\Users\<UserName>\Documents\IntelOpenVINO\.openvino\metallama_huggingface -p 

“What is generative AI?” -n 2 -f pt

QNN pipeline:
1.	 Download and install the following applications:

a.	 Python 3.10.11 (64-bit)
i.	  www.python.org/downloads/release/python-31011/ 

b.	 Microsoft Visual Studio Code (Arm64)
i.	  https://code.visualstudio.com/download 

c.	 Git for Windows
i.	  https://gitforwindows.org/ 

2.	 Configure Qualcomm AI Runtime SDK version 2.32.6.250402.
a.	  https://qpm.qualcomm.com/#/main/tools/details/Qualcomm_AI_Runtime_Community

3.	 Install the qai_hub_models AI Hub package.
a.	  https://pypi.org/project/qai-hub/ 

4.	 Install the Hugging Face CLI.
5.	 Install required Python dependencies:

a.	 Torch
b.	 Transformers
c.	 ONNX
d.	 NumPy®

6.	 Download the meta-Llama/Llama-3.2-3B model with the Hugging Face CLI.
7.	 Launch Visual Studio Code.

Note: The remainder of the QNN pipeline is executed with custom Python code not provided in any Qualcomm AI Hub tutorials.

8.	 Trace the Hugging Face model to TorchScript.
a.	 This requires the WrappedLlamaModel(torch.nn.Module) class in order to prevent structured output issues and to extract 

logits.
9.	 Load the model.
10.	 Wrap the model with WrappedLlamaModel(torch_model).
11.	 Prepare the input tensor with the torch.randint() function.
12.	 Convert the model with the torch.jit.trace() function.

a.	 This is required to convert to ONNX format.
13.	 Export to ONNX format and save using external data formats:

onnx.save_model(onnx_model, external.onnx, save_as_external_data=True)

a.	 This resolves the 2 GB Protobuf size limitation error when compiling to the AI Hub.
14.	 Create a directory structure ending with .onnx (required by AI Hub).
15.	 Submit the model for compiling using the hub.submit_compile_job() function.
16.	 Load the tokenizer using the AutoTokenizer.from_pretrained() function

https://huggingface.co/login
https://huggingface.co/meta-llama/Llama-3.2-3B
https://github.com/openvinotoolkit/openvino.genai
https://www.python.org/downloads/release/python-31011/
https://code.visualstudio.com/download
https://gitforwindows.org/
https://qpm.qualcomm.com/#/main/tools/details/Qualcomm_AI_Runtime_Community
https://pypi.org/project/qai-hub/
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17.	 Convert to NumPy arrays.
18.	 Convert the data into the dictionary format expected by AI Hub.
19.	 Submit the quantization job to AI Hub using the hub.submit_quantize_job() function.
20.	 The quantization job submission will fail on Qualcomm’s AI Hub server with an internal quantizer error.
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