

Behind the Report:

A Comparative Study of Enterprise Storage Platforms—Performance, Snapshots, Data Reduction, and Usability

Summary

The following test methodology outlines the steps that Prowess Consulting used to test the performance, snapshot, data-reduction, and ease-of-use capabilities of the Dell PowerStore[™] 500T and IBM FlashSystem[®] 5300 storage solutions utilizing Vdbench on VMware ESXi[™] Linux[®] virtual machines (VMs). For each storage platform, we used a single storage array with dual nodes. For the client side, we used one command VM and eight test VMs (two VMs per ESXi server). **Note**: The command VM needs access to the <u>Vdbench and snapshot files</u>.

For this testing, the Prowess Consulting engineers performed the following actions in an offsite lab:

- 1. Created logical unit numbers (LUNs) on the Dell PowerStore and IBM FlashSystem storage systems and exposed the LUNs to the VMware ESXi host.
 - a. Measured the number of clicks needed to create the LUNs on each platform.
- 2. Added the LUNs as raw device mappings to eight total VMware Linux VMs exclusive to each storage platform.
- 3. Used Vdbench, an application that simulates a controlled input/output (I/O) load, to generate data on the LUNs.
- 4. Used Vdbench to generate I/O load and create 10 snapshots for each platform.
 - a. Measured the latency impact of this commonly used data-protection task on I/O operations per second (IOPS) performance on each platform.
 - b. Measured the storage efficiency using a data-reduction report or pool-properties view on each storage platform.
- 5. Used Vdbench to generate I/O load.
 - a. Measured the performance of small write workloads, such as those used in transactional databases.

Hypothesis and Results

To assess the business value of an enterprise storage solution, customers need to consider multiple factors in addition to upfront costs. We hypothesized that certain key performance indicators (KPIs)—such as performance, latency impact on snapshot creation, data reduction, and usability—could give customers a more accurate picture of a storage solution's value to their business.

Our test results revealed that the Dell PowerStore 500T storage solution showed significantly better KPIs than the IBM FlashSystem 5300 storage solution. We also analyzed how these results can help customers decide what solution is best for their needs.

Compared to the IBM FlashSystem 5300 storage solution, the Dell PowerStore 500T platform:

- Achieves up to 52x lower latency during snapshot creation
- Provides up to 2.3x higher data reduction ratio (DRR)
- Delivers up to 1.66x the write performance
- Uses up to 2.3x fewer steps to provision volumes

Test Configurations

Table 1 shows the system configurations used for testing.

Table 1 | Storage platform configurations

Component	Testing VM	Dell PowerStore™ 500T	IBM FlashSystem [®] 5300
Number of CPUs	6 virtual CPUs	1 per node, 2 nodes per storage system	1 per node, 2 nodes per storage system
Total Cores		24	24
CPU Clock Rate		2.2 GHz	2.0 GHz
Storage Controller 1: Number of Drives	1 (operating system [OS])		
Storage Controller 2: Number of Drives	2 (test volumes)	12 x 3.8 TB NVM Express® (NVMe®) triple-level cell (TLC) solid-state drive (SSD)	12 x 4.8 TB 2.5-inch IBM FlashCore® Module (FCM) field-replaceable unit (FRU)
Memory	24 GB	96 GB per node	128 GB per node
Number of DIMMs		6 x 16 GB per node	
OS	Red Hat [®] Enterprise Linux [®]		
OS Version	8.3		
OS Kernel	5.4.17-2102.201.3.el8uek. x86_64		

Test Procedures

All testing was performed remotely, accessing the Dell PowerStore 500T and IBM FlashSystem 5300 systems in an offsite lab. This section contains step-by-step procedures for configuring and testing each platform.

Configuring and Testing the Dell PowerStore 500T Storage Platform

- 1. Sign in to the Dell PowerStore Manager graphical user interface (GUI).
 - a. Under the Storage tab, select Volumes from the drop-down menu.
 - b. Click +Create.
 - c. In the **Create Volumes** pop-up, provide the following configuration details:
 - i. Name (or Prefix): vol1
 - ii. **Description**: Leave blank.
 - iii. Category: Other
 - iv. Application: Leave blank.
 - v. Quantity: 16
 - vi. Size: 100 GB
 - vii. Additional Volume Group: vg1
 - viii. Volume Protection Policy: None
 - ix. Volume Performance Policy: Medium
 - d. At the bottom-right of the window, click Next.
 - e. On the Host Mappings page, select all host for the ESXi hosts, and then click Next.
 - f. On the Summary page, click Create.
- 2. Sign in to the VMware vSphere® client for the VMware testing environment.
 - a. On the **Configure** page, in the **Storage Adapters** view, for each of the ESXi hosts selected in step 1, click **Rescan Storage**.
 - b. Select the test VM, click **Actions**, and then click **Edit Settings**.
 - i. On the Edit Settings page, select the Add New Device drop-down menu at the top right.
 - ii. Under Disks, Drives and Storage, click RDM Disk.
 - iii. On the Select Target LUN page, select one of the LUNs from the PowerStore platform.
 - iv. Repeat steps 2.b.ii. and 2.b.iii., adding a second 100 GB LUN to the VM.
 - c. Click **OK** to apply the new settings.
 - d. Repeat steps 2.b. and 2.c. for each VM.

- 3. Use Secure Shell (SSH) to access the command VM:
 - a. Navigate to the directory with Vdbench data, and then run the following command to fill the volume with data that can be compressed at a 2:1 ratio:

./vdbench -f fill16.vdb -o test1-out

- b. Wait for Vdbench to complete.
- c. Wait an additional 30 minutes.
- 4. Sign in to the PowerStore Manager GUI.
 - a. On the **Dashboard > Hardware** page, click the appliance name and record:
 - i. The Overall Efficiency ratio
 - ii. The **Snap Savings** ratio
 - iii. The Thin Savings ratio
 - iv. The **Overall DRR** at the top of the chart
 - v. The Savings of value
 - vi. Logical Used
 - vii. Physical Used
- 5. Use SSH to open two terminals for accessing the command VM:
 - a. In the first terminal window:
 - i. Navigate to the Vdbench directory.
 - ii. Prepare to run the following command, which will generate a workload of 50:50 read/write data:

./vdbench -f testsnap.vdb -o runID

- b. In the second terminal window:
 - i. Navigate to the directory containing the snaptest file.
 - ii. Prepare to run the following command, which will trigger a snapshot every hour for 10 hours, with a 10-hour snapshot expiration time:

./snaptest > snapshotting-runID

- c. In quick succession, run the commands prepared in both terminal windows.
- d. Wait 10 hours while the snapshots are taken.
- e. Wait an additional 10 hours while the snapshots expire.
- f. Wait an additional four hours for the system to settle.
- g. Record the data from runID/totals.html and runID/flatfile.html.
- 6. Sign in to the PowerStore Manager GUI.
 - a. On the **Dashboard > Hardware** page, click the appliance name and record:
 - i. The **Overall Efficiency** ratio
 - ii. The Snap Savings ratio
 - iii. The Thin Savings ratio
 - iv. The **Overall DRR** at the top of the chart
 - v. The Savings of value
 - vi. Logical Used

vii. Physical Used

- 7. Use SSH to access the command VM:
 - a. Navigate to the directory with Vdbench data, and then run the following command:

./vdbench -f performancetest.vdb -o perf-runID

- b. Wait for Vdbench to complete.
- c. Record the data from perf-runID/totals.html and perf-runID/flatfile.html.
- Sign in to the vSphere client for the VMware testing environment.
- a. Select the first test VM, click Actions, and then click Edit Settings.
- b. For the first LUN from the PowerStore platform, select the **ellipsis** icon next to the disk, and then select **Remove device and data**.
- c. For the second LUN from the PowerStore platform, select the **ellipsis** icon next to the disk, and then select **Remove device and data**.
- d. Click OK.

8.

e. Repeat steps 8.a.-8.d. for each test VM.

- 9. Sign in to the PowerStore Manager GUI.
 - a. Click the Storage tab, and then select Volume Group from the drop-down menu.
 - b. Select the **vg1** volume group and then the **members** card.
 - c. Select all volumes.
 - d. From the More Actions drop-down, select Remove.
 - e. Click the **Storage** tab, and then select **Volumes** from the drop-down menu.
 - f. Select the checkbox below the **Create** button to select all created LUNs.
 - g. From the **Provision** drop-down menu, click **Unmap**.
 - h. On the Unmap Hosts page, select the checkbox next to all of the ESXi Host names, and then click Apply.
 - i. On the Volumes page, select the More Actions drop-down menu, and then click Delete.
 - At the Delete Volumes pop-up, select Skip Recycle Bin and Permanently Delete, and then click Delete.
 - j. Wait at least 30 minutes before taking any further actions with the platform.

Configuring and Testing the IBM FlashSystem® 5300 Platform

- 1. Sign in to the IBM FlashSystem platform's storage OS using the system manager GUI.
 - a. From the left-side menu, select **Pools > Pools**.
 - i. From the **Pools** page, click **Create > Create Pool**.
 - ii. On the **Create Pool** page, provide the following configuration information:
 - 1. Name: Pool0
 - 2. Select the **Data Reduction** checkbox.
 - 3. If selecting an existing provisioning policy, select it from the drop-down at this point.
 - 4. Click Create.
 - 5. After pool creation completes, click **Close**.
 - iii. Select the freshly created pool, and then click **Actions > Add Storage**.
 - 1. Confirm the default selections of Drive Class and Number of Drives are correct.
 - 2. Click Add Storage.
 - 3. When storage addition completes, click **Close**.
 - b. From the left-hand menu, select Volumes > Volumes.
 - c. On the Volumes page, select Create Volumes, and then specify:
 - i. Volume Group: vg1
 - ii. Pool: Pool0
 - d. Click Define Volume Properties, and then set:
 - i. Name: vol1
 - ii. Quantity: 16
 - iii. Capacity: 100 GB
 - e. Click Save.
 - f. Click Create and map.
 - g. After the Create Volumes process completes, click Continue.
 - h. Select all hosts to be mapped, and then click Create Mapping.
 - i. If a "Volumes mapped to multiple hosts must coordinate access" warning appears, click Yes.
 - i. After the mapping process completes, click **Close**.
- 2. Sign in to the VMware vSphere client for the VMware testing environment.
 - a. On the **Configure** page, in the **Storage Adapters** view, for each of the VM hosts selected in step 1, click **Rescan Storage**.
 - b. Select the test VM, click **Actions**, and then click **Edit Settings**.
 - i. On the Edit Settings page, select the Add New Device drop-down menu at the top right.
 - ii. Under Disks, Drives and Storage, click RDM Disk.
 - iii. On the Select Target LUN page, select one of the LUNs from the IBM FlashSystem platform.
 - iv. Repeat steps 2.b.ii. and 2.b.iii., adding a second 100 GB LUN to the VM.
 - c. Click **OK** to apply the new settings.
 - d. Repeat steps 2.b. and 2.c. for each test VM.
- 3. Use SSH to access the command VM:

a. Navigate to the directory with Vdbench data, and then run the following command:

- ./vdbench -f fill16.vdb -o test1-out
- b. Wait for Vdbench to complete.
- c. Wait an additional 30 minutes.

- 4. Sign in to the IBM FlashSystem platform's storage OS using the system manager GUI.
 - On the Pools > Pools page, select Actions > Properties, and then record:
 - i. Usable Capacity

а

- ii. Capacity Details
- iii. Thin Provisioning Savings
- iv. Compression Savings
- v. Drive Compression Savings
- vi. Deduplication Savings
- vii. Drive Compression Savings
- viii. Total Savings
- 5. Use SSH to open two terminals for accessing the command VM:
 - a. In the first terminal window:
 - i. Navigate to the Vdbench directory.
 - ii. Prepare to run the following command:
 - ./vdbench -f testsnap.vdb -o runID
 - b. In the second terminal window:
 - i. Navigate to the directory containing the snaptest file.
 - ii. Prepare to run the following command:
 - ./snaptest > snapshotting-runID
 - c. In quick succession, run the commands prepared in both terminal windows.
 - d. Wait 10 hours while the snapshots are taken.
 - e. Wait an additional 10 hours while the snapshots expire.
 - f. Wait an additional four hours for the system to settle.
 - g. Record the data from **runID/totals.html** and **runID/flatfile.html**.
- 6. Sign in to the IBM FlashSystem platform's storage OS using the system manager GUI.
- a. On the **Pools > Pools** page, select **Actions > Properties**, and then record:
 - i. Usable Capacity
 - ii. Capacity Details
 - iii. Thin Provisioning Savings
 - iv. Compression Savings
 - v. Drive Compression Savings
 - vi. Deduplication Savings
 - vii. Drive Compression Savings
 - viii. Total Savings
- 7. Use SSH to access the command VM:
 - a. Navigate to the directory with Vdbench data, and then run the following command:
 - ./vdbench -f performancetest.vdb -o perf-runID
 - b. Wait for Vdbench to complete.
 - c. Record the data from perf-runID/totals.html and perf-runID/flatfile.html.
- 8. Sign in to the vSphere client for the VMware testing environment.
 - a. Select the first test VM, click Actions, and then click Edit Settings.
 - b. For the first LUN from the IBM FlashSystem platform, select the **ellipsis** icon next to the disk, and then select **Remove device** and data.
 - c. For the second LUN from the IBM FlashSystem platform, select the **ellipsis** icon next to the disk, and then select **Remove device and data**.
 - d. Click OK.

9

- e. Repeat steps 8.a.-8.d. for each test VM.
- Sign in to the IBM FlashSystem platform's storage OS using the system manager GUI.
- a. Select **Volumes > Volumes** from the left-hand menu.
 - b. Select all volumes.
 - i. Click Actions > Remove private mappings.
 - 1. Enter the number of mappings to be removed: 64.
 - 2. Click **Remove**.
 - 3. After the progress window disappears, click **Close**.

- ii. Select Actions > Delete.
 - 1. Enter volumes to be removed: 16.
 - 2. Click Delete.
 - 3. After the progress window disappears, click Close.
- c. Select **Pools > Pools** from the left-hand menu.
- d. Select **Pool0**, and then click **Actions > Delete**.
 - i. Press **Delete** at the confirmation window.
 - ii. After the progress window disappears, click Close.

Vdbench and Snapshot Files

The following sections provide the details of the Vdbench configuration files utilized during our testing, in addition to the scripts used to initiate the platform snapshots.

Vdbench Configuration 1 fill16.vdb

We used the first Vdbench configuration file to generate disk usage on 16 devices, setting the compression ratio to 2.5 and the deduplication ratio to 2. This same file is used with both platforms.

compratio=2.5 dedupratio=2 dedupunit=4k dedupsets=5% messagescan=no hd=default,shell=ssh,user=root hd=hd1,system=PM 001 hd=hd2,system=PM_002 hd=hd3,system=PM_003 hd=hd4,system=PM_004 hd=hd5,system=PM 005 hd=hd6,system=PM_006 hd=hd7,system=PM 007 hd=hd8,system=PM_008 sd=default,openflags=directio sd=sd1,hd=hd1,lun=/dev/sdc sd=sd2,hd=hd1,lun=/dev/sdb sd=sd3,hd=hd2,lun=/dev/sdc sd=sd4,hd=hd2,lun=/dev/sdb sd=sd5,hd=hd3,lun=/dev/sdc sd=sd6,hd=hd3,lun=/dev/sdb sd=sd7,hd=hd4,lun=/dev/sdc sd=sd8,hd=hd4,lun=/dev/sdb sd=sd9,hd=hd5,lun=/dev/sdc sd=sd10,hd=hd5,lun=/dev/sdb sd=sd11,hd=hd6,lun=/dev/sdc sd=sd12,hd=hd6,lun=/dev/sdb sd=sd13,hd=hd7,lun=/dev/sdc sd=sd14,hd=hd7,lun=/dev/sdb sd=sd15,hd=hd8,lun=/dev/sdc sd=sd16,hd=hd8,lun=/dev/sdb wd=default,sd=* wd=wd_256k,sd=sd*,xfersize=256k,seekpct=eof rd=default. rd=read4k_test,wd=wd_256k,iorate=max,interval=10,forrdpct=(0),elapsed=10h,forthreads=(1)

Vdbench Configuration 2 testsnap.vdb

We used the second Vdbench configuration file to generate load on 16 devices, with a 50/50 mix of read and write actions at an 8K block size, setting the compression ratio to 2.5 and the deduplication ratio to 2. This file is used with both platforms, in conjunction with their respective snapshot initiator scripts.

compratio=2.5 dedupratio=2 dedupunit=4k dedupsets=5% messagescan=no hd=default,shell=ssh,user=root hd=hd1,system=PM_001 hd=hd2,system=PM_002 hd=hd3,system=PM_003 hd=hd4,system=PM_004 hd=hd5,system=PM_005 hd=hd6,system=PM_006 hd=hd7,system=PM_007 hd=hd8,system=PM_008 sd=default,openflags=o_direct,size=100G sd=sd1,hd=hd1,lun=/dev/sdb sd=sd2,hd=hd1,lun=/dev/sdc sd=sd17,hd=hd2,lun=/dev/sdb sd=sd18,hd=hd2,lun=/dev/sdc sd=sd33,hd=hd3,lun=/dev/sdb sd=sd34,hd=hd3,lun=/dev/sdc sd=sd49,hd=hd4,lun=/dev/sdb sd=sd50,hd=hd4,lun=/dev/sdc sd=sd65,hd=hd5,lun=/dev/sdb sd=sd66,hd=hd5,lun=/dev/sdc sd=sd81,hd=hd6,lun=/dev/sdb sd=sd82,hd=hd6,lun=/dev/sdc sd=sd97,hd=hd7,lun=/dev/sdb sd=sd98,hd=hd7,lun=/dev/sdc sd=sd113,hd=hd8,lun=/dev/sdb sd=sd114,hd=hd8,lun=/dev/sdc wd=default,sd=* wd=wd_8k,sd=sd*,xfersize=8k,seekpct=100 rd=default

rd=mix8k_test,wd=wd_8k,iorate=50000,warmup=30,interval=30,forrdpct=(50),elapsed=10h,forthreads=(32)

Vdbench Configuration 3 performancetest.vdb

We used the third Vdbench configuration file to generate 4K and 8K block-sized write workloads, setting the compression ratio to 2.5 and the deduplication ratio to 2. This file is used with both platforms.

compratio=2.5 dedupratio=2 dedupunit=4k dedupsets=5% messagescan=no hd=default,shell=ssh,master=192.168.2.200,user=root hd=hd1,system=PS_001 hd=hd2,system=PS_002 hd=hd3,system=PS_003 hd=hd4,system=PS_004 hd=hd5,system=PS_005 hd=hd6,system=PS_006 hd=hd7,system=PS_007

```
hd=hd8,system=PS_008
sd=default,openflags=0 direct,size=100G
sd=sd1,hd=hd1,lun=/dev/sdb
sd=sd2,hd=hd1,lun=/dev/sdc
sd=sd17,hd=hd2,lun=/dev/sdb
sd=sd18,hd=hd2,lun=/dev/sdc
sd=sd33,hd=hd3,lun=/dev/sdb
sd=sd34,hd=hd3,lun=/dev/sdc
sd=sd49,hd=hd4,lun=/dev/sdb
sd=sd50,hd=hd4,lun=/dev/sdc
sd=sd65,hd=hd5,lun=/dev/sdb
sd=sd66,hd=hd5,lun=/dev/sdc
sd=sd81,hd=hd6,lun=/dev/sdb
sd=sd82,hd=hd6,lun=/dev/sdc
sd=sd97,hd=hd7,lun=/dev/sdb
sd=sd98,hd=hd7,lun=/dev/sdc
sd=sd113,hd=hd8,lun=/dev/sdb
sd=sd114,hd=hd8,lun=/dev/sdc
wd=default,sd=*
wd=wd_4k,sd=sd*,xfersize=4k,seekpct=100
wd=seq 4k,sd=sd*,xfersize=4k,seekpct=0
wd=wd_8k,sd=sd*,xfersize=8k,seekpct=100
wd=wd_32k,sd=sd*,xfersize=32k,seekpct=100
wd=wd_256k,sd=sd*,xfersize=256k,seekpct=100
wd=seq_256k,sd=sd*,xfersize=256k,seekpct=0
rd=default
rd=write4k test,wd=wd 4k,iorate=max,warmup=30,interval=1,forrdpct=(0),elapsed=5m,forthreads=(8)
rd=write8k_test,wd=wd_8k,iorate=max,warmup=30,interval=1,forrdpct=(0),elapsed=5m,forthreads=(8)
```

PowerStore Snapshot Initiation Script snaptest.sh

This file is specific to the PowerStore test configuration. It is used to generate 10 snapshots over the course of 10 hours, with each snapshot having a 10-hour expiration. Replace **PASSWORD_HERE** with the system password, and set the host IP in the **REMOTE_HOST=**"" line.

```
#!/bin/bash
# volume group name
VG NAME="vg1"
# Number of repetitions
REPEAT_COUNT=10
# Remote server credentials
REMOTE USER="admin"
REMOTE HOST=""
# Step 1: Wait for 10 minutes
echo "Waiting for 10 minutes..."
sleep 600 # 600 seconds = 10 minutes
# Main loop to repeat n times
for ((i=1; i<=REPEAT_COUNT; i++))</pre>
do
 echo "Iteration $i"
 # Step 2: Create the snapshot on the remote system
 echo "Creating snapshot for volume group: $VG_NAME on remote server $REMOTE_HOST"
 SNAPSHOT_NAME="${VG_NAME}_snapshot_$i"
EXPIRE_DATE=$(date -u -d "+600 minute" +"%Y-%m-%dT%H:%M:%SZ")
 pstcli -d $REMOTE HOST -u admin -p PASSWORD HERE volume group -name $VG NAME snapshot -name $SNAPSHOT
NAME -expiration timestamp $EXPIRE DATE
```

```
echo "Waiting for 60 minutes..."
sleep 3600 # 3600 seconds = 10 minutes
done
echo "Snapshot creation completed."
```

IBM FlashSystem Snapshot Initiation Script snaptest.sh

This file is specific to the IBM FlashSystem test configuration. It is used to generate 10 snapshots over the course of 10 hours, with each snapshot having a 10-hour expiration. Replace both instances of **PASSWORD_HERE** with the system password, and set the host IP in the **REMOTE_HOST=**"" line.

```
#!/bin/bash
# IBM FlashSystem volume group name
VG_NAME="vg1"
# Number of repetitions
REPEAT_COUNT=10
# Number of times to print saving
iterations=50
# Remote server credentials
REMOTE_USER="superuser"
REMOTE_HOST=""
#print saving
print_saving() {
  echo "Current saving"
   date
   sshpass -p 'PASSWORD_HERE' ssh $REMOTE_USER@$REMOTE_HOST "lsmdiskgrp -delim :" | awk -F: '{print
$32,$33,$35,$36}'
}
  # Step 1: Wait for 10 minutes
 echo "Waiting for 10 minutes..."
 sleep 600 # 600 seconds = 10 minutes
# Create 10 snapshots
for ((i=1; i<=REPEAT_COUNT; i++))</pre>
do
  echo "Iteration $i"
 print_saving
  # Step 2: Create the snapshot on the remote system
  echo "Creating snapshot for volume group: $VG_NAME on remote server $REMOTE_HOST"
 SNAPSHOT_NAME="${VG_NAME}_snapshot_$i"
 sshpass -p 'PASSWORD_HERE' ssh $REMOTE_USER@$REMOTE_HOST "addsnapshot -name $SNAPSHOT_NAME -volumegroup
$VG_NAME -retentionminutes 600"
 print_saving
  # Step 3: Wait for 60 minutes
  echo "Waiting for 60 minutes..."
 sleep 3600 # 3600 seconds = 60 minutes
 print_saving
done
echo "Snapshot creation completed."
#echo "Saving after testing"
for ((i=1;i<=iterations;i++))</pre>
do
echo "Running iteration $i every 15 min"
   print_saving
   sleep 900
done
echo "all iterations completed"
```


Legal Notices and Disclaimers

The analysis in this document was done by Prowess Consulting and commissioned by Dell Technologies. Results have been simulated and are provided for informational purposes only. Any difference in system hardware or software design or configuration may affect actual performance. Prowess and the Prowess logo are trademarks of Prowess Consulting, LLC. Copyright © 2025 Prowess Consulting, LLC. All rights reserved. Other trademarks are the property of their respective owners.

0325/240108