3 PROWESS

Methodology

Behind the Report:

Do Customers Benefit from Intel® In-Memory Analytics
Accelerator (Intel® IAA), and at What Cost?

Prowess Consulting, sponsored by AMD, sought to explore the value of using hardware accelerators like Intel IAA to meet the
performance and performance-per-watt requirements of in-memory analytics and database workloads versus using lower-cost
standard x86 cores that do not require workloads to be modified or any additional processor overhead.

As a starting point, Prowess Consulting explored a claim from the Intel performance index for 4th Gen Intel Xeon Scalable processors.

2.01x average performance-per-watt efficiency improvement for RocksDB (with Intel IAA compared to Zstd)'

This document provides the system-configuration details and step-by-step procedures that Prowess Consulting used to perform
testing of RocksDB workloads to compare performance and efficiency of AMD EPYC™ processors to Intel® Xeon® processors with
Intel® In-Memory Analytics Accelerators (Intel® IAA).

The purpose of the testing performed by Prowess Consulting was to evaluate public claims from Intel regarding database
performance of systems powered by 4th Gen Intel Xeon Scalable processors with Intel IAA. The claims were used as a starting point
for performance and efficiency comparisons against AMD EPYC processors.

Specifically, Prowess Consulting compared two server platforms—one powered by Intel Xeon Platinum 8490H processors configured
both with and without Intel IAA, and one configured with AMD EPYC 9734 processors. Both scenarios ran dbench against a RocksDB

workload.

The goals were to determine at what point, if any, CPU core utilization for the AMD EPYC 9734 processor—based platform met or
exceeded the Intel claim, and to evaluate the overall performance and performance/watt capabilities of the two systems.

Testing was completed on April 19, 2024.

The analysis in this document was done by Prowess Consulting and commissioned by AMD. 1

https://edc.intel.com/content/www/us/en/products/performance/benchmarks/4th-generation-intel-xeon-scalable-processors/

Methodology | Behind the Report: Do Customers Benefit from Intel® In-Memory Analytics Accelerator (Intel IAA®), and at What Cost?

Table 1. System under test (SUT) configurations

AMD EPYC™ 9734 Processor—Based Intel® Xeon® Platinum 8490H Processor—Based
Configuration Configuration
CPU AMD EPYC 9734 Intel Xeon Platinum 8490H
Number of CPUs 2 2
Cores/threads per CPU 112/224 60/120
Cores/threads total 224/448 120/240
(alfcil:ef/r;qa‘ieggzst) 3.0/3.0 GHz 2.9/3.5GHz
Hardware accelerators N/A Intel® In-Memory Analytics Accelerator (Intel® IAA)
Installed memory 1.5TB 1TB
Memory 64 GB Samsung® 64 GB Micron®
DIMM slots used 24/24 16/16
Operating system (0S) Ubuntu® 22.04.3 LTS Ubuntu 22.04.3 LTS
0S kernel 5.15.0-86-generic 5.15.0-91-generic

Intel® In-Memory Analytics Accelerator (Intel® I1AA)

Prowess Consulting used RocksDB to compare a system with a 4th Gen Intel Xeon Platinum processor using Intel IAA accelerated
compression to the same system using Zstd compression and then to a system with a 4th Gen AMD EPYC processor using

Zstd compression. The following procedures assume that the instances have Ubuntu® 22.04 installed and that the instances are
connected to a Sentry switched power distribution unit (PDU) for power monitoring. Testing on the Intel processor—powered system
was done with O, 1, and 8 Intel IAA accelerators enabled.

The following section lists the steps needed to set up the instances prior to testing. Default configuration settings were used for the
tested servers and environments unless noted in the steps below.

Setting Up the Intel® Xeon® Platinum 8490H Processor—Powered Server with RocksDB
Use the following steps to set up the server powered by an Intel Xeon Platinum 8490H processor:
1. Open aterminal and initiate a Secure Shell (SSH) session to the instance running Ubuntu® 22.04.
2. Run the following commands to update the system and kernel and then reboot:

sudo su -

apt update

apt upgrade

apt install linux-generic-hwe-22.04

Reboot

The analysis in this document was done by Prowess Consulting and commissioned by AMD. 2

Methodology | Behind the Report: Do Customers Benefit from Intel® In-Memory Analytics Accelerator (Intel IAA®), and at What Cost?

4.

10.

11.

12.

13.

14.

15.

16.

17.

Run the following command to modify the kernel boot parameters:
sudo vim /etc/default/grub
a. Update the GRUB_CMDLINE_LINUX_DEFAULT value to “intel_iommu=on,sm_on no5lvl”
b. To save and quit, press <Esc> :wq <Enter>.
Run the following commands to commit the changes and reboot:
sudo update-grub
sudo reboot
Run the following command to install system dependencies:
sudo apt-get install -y git cmake ccache python3 ninja-build nasm yasm gawk lsb-release wget
software-properties-common gnupg build-essential autoconf automake autotools-dev libtool pkgconf
asciidoc xmlto uuid-dev libjson-c-dev libkeyutils-dev libz-dev libssl-dev debhelper devscripts
debmake quilt fakeroot lintian asciidoctor file gnupg patch patchutils libgflags-dev liblz4-dev nmon
sysstat
Run the following command to confirm the ID of the volume that will be used during testing run, henceforth $Volume_ID:
fdisk -1
Run the following command to get the disk UUID, henceforth SDisk_UUID:
Ls -lah /dev/disk/by uuid | grep $Volume ID
Run the following command to confirm the NUMA node of the volume:
for i in /sys/class/*/*/device; do pci=$(basename “$(readlink $i)”); if [-e $i/numa node]; then
echo “NUMA Node: “cat $i/numa node” ($i): “lspci -s $pci>” ; fi; done | sort | grep nvme
Run the following command to add a file system to the volume:
sudo mkfs.xfs /dev/$Volume ID
Run the following command to create a directory that will be used for housing the various source code components on the
volume to be used in testing, and as a mount point for the test volume, henceforth SSource_Dir:
mkdir $Source Dir
Run the following command to edit /etc/fstab:
sudo vim /etc/fstab
a. Enter a record for the new volume mount point /dev/disk/by-uuid/SDisk_UUID $Source_Dir xfs
noatime,nodiratime,nodiscard 0 0
b. To save and quit, press <Esc> :wq <Enter>.
Run the following command to mount the volume:
sudo mount -a
Run the following command to change to the $SSource_Dir directory you created in step 10:
cd $Source Dir
Run the following command to clone the Intel® Query Processing Library (Intel® QPL) repository:
git clone --recursive https://github.com/intel/gpl.git --branch=v1.4.0
Run the following commands to build Intel QPL in SQPL_Dir:
mkdir -p ./gpl/build
cd gpl/build
cmake -DCMAKE BUILD TYPE=Release -DCMAKE INSTALI, PREFIX=$QPL Dir ..
cmake --build . --target install
Run the following command to change back to $Source_Dir:
cd $Source Dir
Run the following commands to build Intel® oneAPI Threading Building Blocks (Intel® TBB):
Wget https://registrationcenter-download.intel.com/akdlm/IRC NAS/af3ad519-4c87-4534-87cb-
5c7bdal2754e/1_tbb_oneapi p 2021.11.0.49527_ offline.sh
chmod +x 1 tbb oneapi p 2021.11.0.49527 offline.sh
./1_tbb_oneapi_p 2021.11.0.49527_offline.sh

The analysis in this document was done by Prowess Consulting and commissioned by AMD.

Methodology | Behind the Report: Do Customers Benefit from Intel® In-Memory Analytics Accelerator (Intel IAA®), and at What Cost?

18.
19.
20.
21.
22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

The analysis in this document was done by Prowess Consulting and commissioned by AMD.

Press Y to accept license agreement.
Press N to not consent to data sharing.
Select Begin installation.
Upon completion, select Close.
Run the following command to change back to SSource_Dir:
cd $Source Dir
Run the following command to clone the Intel® Data Accelerator Driver (IDXD) repository:
git clone https://github.com/intel/idxd-config.git
Run the following commands to build IDXD:
cd idxd-config
./autogen.sh
./configure CFLAGS='-g -02'--prefix=/usr --sysconfdir=/etc --libdir=/usr/lib
make
make check
sudo make install
Run the following command to change back to $Source_Dir:
cd $Source Dir
Run the following commands to build the Google Test unit test framework (gtest):
sudo su -
apt-get install libgtest-dev
cd /usr/src/gtest
cmake CMakeLists.txt
make
cp ./lib/*.a /usr/lib/
Run the following command to change back to SSource_Dir:
cd $Source Dir
Run the following command to get the Intel-modified fork of the RocksDB code:
git clone --branch pluggable compression https://github.com/lucagiac8l/rocksdb.git
Run the following command to enter the code directory:
cd rocksdb
Run the following command to pull the Intel IAA compressor code:
git clone https://github.com/intel/iaa-plugin-rocksdb.git plugin/iaa compressor
Run the following commands to add the Facebook® repository and bring in the corpus pull request:
git remote add facebook https://github.com/facebook/rocksdb.git
git fetch facebook pull/10395/head:pull 10395
git merge pull 10395
Run the following command to create and enter the build directory:
mkdir -p ./build; cd ./build
Run the following command to set the prescribed variables to the Snappy, LZ4, and Zstd libraries’ locations:
WITH SNAPPY=/usr/1lib/x86 64-linux-gnu/
WITH LZ4=/usr/1lib/x86_ 64-linux-gnu/
WITH_ZSTD=/usr/lib/x86_64-linux-gnu/
Run the following command to configure the build:
CXXFLAGS="-I/$QPL Dir/include -I/$QPL Dir/include/gpl -I/usr/local/include -I/usr/lib64/ -I/usr/lib/"
LDFLAGS="-L$QPL Dir//lib -L/usr/local/lib/ -L/usr/lib/ -L/opt/intel/oneapi/tbb/latest/lib/intel64/
gccd .8/ -L/usr/lib x86_64-linux-gnu/ -L$SourceDir/rocksdb/include -DOPT=-DEBUG -02 -DNDEBUG
-DROCKSDB_ASSERT STATUS CHECKED=1 “ CFLAGS="-I /usr/local/include” ROCKSDB_CXX STANDARD="c++17"
DISABLE WARNING_AS_ERROR=1 cmake .. -DROCKSDB_ PLUGINS="iaa compressor” -DCMAKE BUILD TYPE=Release

-DWITH SNAPPY=$WITH SNAPPY -DWITH LZ4=$WITH LZ4-DWITH ZSTD=$WITH ZSTD

Methodology | Behind the Report: Do Customers Benefit from Intel® In-Memory Analytics Accelerator (Intel IAA®), and at What Cost?

35. Run the following command to start the build:
make install
36. Once completed, the RocksDB tools can be found in $SourceDir/rocksdb/build, henceforth SRocksDB_Path.
37. Run the following command to change back to $Source_Dir:
cd $Source Dir
38. Run the following command to bring in the Calgary corpus data:
wget http://www.data-compression.info/files/corpora/calgarycorpus.zip
39. Run the following command to extract the Calgary corpus data:

unzip calgarycorpus.zip

40. Run the following command to create a folder that will be used to contain the scripts (see the Appendix), henceforth $SScriptsDir:

mkdir $ScriptsDir
41. Run the following command to change to the $ScriptsDir:
cd $ScriptsDir
42. Referencing data from the Appendix, create and populate the following files:
a. SScriptsDir/power_monitor.sh
b. SScriptsDir/RocksRunner-iaa.sh
c. SScriptsDir/XeonRocksRunner-zstd.sh
d. $ScriptsDir/zstdConfig/fillSeqZSTD.sh
e. $ScriptsDir/zstdConfig/readRandom.sh
f. $ScriptsDir/zstdConfig/readrandomwriterandom.sh
g. ScriptsDir/IAAConfig/fillSeqlAA.sh
h. SScriptsDir/IAAConfig/readRandom.sh
i. SScriptsDir/IAAConfig/readrandomwriterandom.sh
j. SScriptsDir/optimizations.sh
43. Run the following command to add the execute permission to each file:

chmod +x $filename

Setting Up the AMD EPYC™ 9734 Processor—Powered Server with RocksDB
Use the following steps to set up the server powered by an AMD EPYC 9734 processor:
1. Open a terminal and initiate an SSH session to the instance running Ubuntu 22.04.
2. Run the following commands to update the system and kernel and then reboot:

sudo su -

apt update

apt upgrade

apt install linux-generic-hwe-22.04

Reboot

3. Run the following command to install system dependencies:

sudo apt-get install -y libgflags-dev libsnappy-dev zliblg-dev libbz2-dev 1liblz4-dev libzstd-dev

libsystemd-dev libudev-dev libreadline-dev pkg-config libxml2-dev libboost-all-dev libelf-dev libnl-

3-dev build-essential yasm zliblg-dev libssl-dev libpci-dev libpcre3 libpcre3-dev cmake

4. Run the following command to confirm the ID of the volume that will be used during the testing run, henceforth SVolume_ID:

fdisk -1

5. Run the following command to get the disk UUID, henceforth SDisk_UUID:
Ls -lah /dev/disk/by uuid | grep $Volume ID

6. Run the following command to confirm the NUMA node of the volume:

for i in /sys/class/*/*/device; do pci=$(basename “$(readlink $i)”); if [-e $i/numa node]; then

echo “NUMA Node: “cat $i/numa _node” ($i): “lspci -s $pci>” ; fi; done | sort | grep nvme

The analysis in this document was done by Prowess Consulting and commissioned by AMD.

Methodology | Behind the Report: Do Customers Benefit from Intel® In-Memory Analytics Accelerator (Intel IAA®), and at What Cost?

7. Run the following command to add a file system to the volume:
sudo mkfs.xfs /dev/$Volume ID
8. Run the following command to create a directory that will be used for housing the various source code components on the
volume to be used in testing, and as a mount point for the test volume, henceforth SSource_Dir:
mkdir $Source Dir
9. Run the following command to edit /etc/fstab:
sudo vim /etc/fstab
a. Enter a record for the new volume mount point /dev/disk/by-uuid/SDisk_UUID $Source_Dir xfs
noatime,nodiratime,nodiscard 0 0
b. To save and quit, press <Esc> :wq <Enter>.
10. Run the following command to mount the volume:
sudo mount -a
11. Run the following command to change to the SSource_Dir directory:
cd $Source Dir
12. Run the following command to clone RocksDB from the official repository run:
git clone https://github.com/facebook/rocksdb.git
13. Run the following commands to add the corpus pull request:
sudo su -
cd rocksdb
git fetch facebook pull/10395/head:pull 10395
git merge pull 10395
14. Run the following commands to set the prescribed variables to the Snappy, LZ4, and Zstd libraries’ locations:
WITH_ SNAPPY=/usr/1lib/x86_ 64-linux-gnu/
WITH_LZ4=/usr/lib/x86_64-linux-gnu/
WITH_ZSTD=/usr/1lib/x86_ 64-linux-gnu/
15. Run the following command to configure the build:
cmake .. -DWITH SNAPPY=$WITH SNAPPY -DWITH LZ4=$WITH LZ4 -DWITH ZSTD=$WITH ZSTD -DCMAKE BUILD
TYPE=Release
16. Run the following command to start the build:
make install
17. Run the following command to bring in the Calgary corpus data:
wget http://www.data-compression.info/files/corpora/calgarycorpus.zip
18. Run the following command to extract the Calgary corpus data:
unzip calgarycorpus.zip
19. Referencing data from the Appendix, create and populate the following files:
a. SScriptsDir/power_monitor.sh
b. SScriptsDir/AMDRocksRunner-zstd.sh
c. $SScriptsDir/zstdConfig/fillSeqZSTD.sh
d. $ScriptsDir/zstdConfig/readRandom.sh
e. SScriptsDir/zstdConfig/readrandomwriterandom.sh
f. $ScriptsDir/optimizations.sh
20. Create three copies of the AMDRocksRunner-zstd.sh file.
a. In file A, set the ReadCount to 4 and the WriteCount to 8.
b. In file B set the ReadCount to 6 and the WriteCount to 12.
c. In file C set the ReadCount to 8 and the WriteCount to 16.
21. Run the following command to add the execute permission to each file:

chmod +x S$filename

The analysis in this document was done by Prowess Consulting and commissioned by AMD.

Methodology | Behind the Report: Do Customers Benefit from Intel® In-Memory Analytics Accelerator (Intel IAA®), and at What Cost?

Running the Tests
Except as noted, the steps below apply to running the test on both the Intel and AMD processor—based platforms. When the
RocksRunner*.sh scripts are run, they start system monitoring, and then trigger simultaneous runs of the “readrandom” benchmark.
After those steps have completed, a collection of “readrandomwriterandom” benchmarks are also triggered to run simultaneously.
1. If using accelerators for the test run:
a. Identify the configuration appropriate for the test from SQPL_Dir/share/QPL/configs/. For example, Tn4d1elw-s-n2.conf.
b. Run the following command to enable the accelerators:
$QPL Dir/share/QPL/scripts/accel conf.sh —load $QPL Dir/share/QPL/configs/$CONFIG FILE
2. Run the following command to populate the Intel IAA test data on the Intel instance with a database name of iaa-dataset:
$ScriptsDir/fillSeq-iaa.sh iaa-dataset
3. Run the following command to populate the Zstd dataset named “Zstd-dataset” on either instance:
$ScriptsDir/fillSeqg-zstd.sh zstd-dataset
4. Toinitiate a test run, first reference the appropriate runner script for the test run, henceforth SRunnerScript:
a. Intel IAA accelerator tests: RocksRunner-1AA.sh
b. Intel Zstd tests: XeonRocksRunner-zstd.sh
c. AMD four-read worker test: AMDRocksRunner-zstdA.sh
d. AMD six-read worker test: AMDRocksRunner-zstdB.sh
e. AMD eight-read worker test: AMDRocksRunner-zstdC.sh
Identify the database location you will be testing against; that is, SScriptsDir/iaa-dataset or SScriptsDir/zstd-data.
6. Run the following command to apply optimizations:
$ScriptsDir/optimizations.sh
7. Runthe following command to start the test:
SRunnerScript $numaNode $runID $ConfigDir $DB_path
a. SRunnerScript is the script identified in step 3.
b. SnumaNode is the CPU node on the same channel as the testing volume.
c. SrunID is an identifier under which the results will be stored.
d. SDB_path is the path identified in step 4.
8. Output of the test run can be found in /root/results/SRuniD.

The analysis in this document was done by Prowess Consulting and commissioned by AMD.

Methodology | Behind the Report: Do Customers Benefit from Intel® In-Memory Analytics Accelerator (Intel IAA®), and at What Cost?

Appendix

power_monitor.sh
This script is used to monitor the system power consumption during a test run. It assumes that the system is connected to a Sentry
switched PDU for each power supply.
1. Update the SIP1 and SIP2 values to the IPs of the PDUs.
2. Update the SID value to the ID of the outlet in the PDU.
3. Update the SUser and SPass values as appropriate.
pduIP1="$IP1"”
pduIP2="$IP2"
result path=$1
mkdir -p $result path/pl
mkdir -p $result path/p2
while true; do
ts=$(date +%s)
curl -k https://$USER:S$PASS@S{pdulPl}/outpower.html?$ID,8 | grep -e “Control State” -e
“Apparent Power” > $result path/pl/powerLogl.${ts}
curl -k https://$USER:S$PASS@S{pdulP2}/outpower.html?$ID,8 | grep -e “Control State” -e
“Apparent Power” > $result path/p2/powerLog2.${ts}
sleep 2

done

RocksRunner-lIAA.sh

This script is used to initiate the RocksDB test run and monitoring. Enter the following code for the RocksRunner-IAA.sh file. The CPU
values here assume that CPU 1 is 60-core hyper-threaded and that it shares a NUMA channel with the volume used for saving data.
Update the CPU IDs if needed.

The UUID of the volume used to save the data will need to replace the SDISK_UUID in the following code. The correct path to the
$ScriptsDir will also need to be set.

#!/bin/bash

test_source=$3

rid=$2 ### Name (not path) of directory to save the fillseq data to and pull from in subsequent

tests

node numa=$1 #### node used to restrict cpu/memory

orig db=$4

rocks_path="/rocks/Sources/rocksdb-CorpusTest/b3"

ts=$(date +%s)

results_dir="/root/results/${rid}.s${ts}"”

alt node numa=0

DISK_UUID="$DISK_UUID”

DISK ID=" 1ls -lah /dev/disk/by-uuid/ | grep $DISK UUID | cut -d’/’ -£3°
Run Prep
mkdir -p $results dir
sync; echo 3 > /proc/sys/vm/drop_ caches
numactl -m $alt _node numa -N $alt node numa nmon -F $results_dir/nmon.out -s2 -c100000 -t &
numactl -m $alt_node numa -N $alt node_numa iostat -k -t -o JSON -cdx $DISK ID 2 > $results_dir/
iostat.out &

numactl -m $alt_node numa -N $alt node numa $ScriptDir/power monitor.sh $results_dir &

The analysis in this document was done by Prowess Consulting and commissioned by AMD. 8

Methodology | Behind the Report: Do Customers Benefit from Intel® In-Memory Analytics Accelerator (Intel IAA®), and at What Cost?

power pid=$!
declare -a pids
echo “Starting readRandom Loop at $(date +%s)” >> Sresults dir/progress summary.txt
for i in $(seq 4); do
cp -r $Sorig db ${orig db} ${rid}.${ts} pass-$i/
Start run in background

case $i in

1)
allowedCPU="60-85"
2)
allowedCPU="86-111"
3)
allowedCPU="112-119,180-198"
4)
allowedCPU="199-224"
esac

echo “starting run $i with cpu $allowedCPU”
$test_source/readRandomIAA.sh $rocks path $allowedCPU ${orig db} ${rid}.${ts} pass-$i >>
Sresults dir/rocks pass${i}.raw &
pids[$i]=$!
done
#wait for all to complete
for i in $(seq 4); do

wait “${pids[$i]}"”

done
echo “Completed readRandom Loop at $(date +%s)” >> S$results dir/progress_summary.txt
echo “Starting readrandomWriterandom Loop at $(date +%s)” >> S$results dir/progress summary.txt

for i in $(seq 8); do

case $i in

1)
allowedCPU="60-73"
i

2)
allowedCPU="74-87"
i

3)
allowedCPU="88-101"
i

4)
allowedCPU="101-114"
i

5)

allowedCPU="114-119,180-188"

rr

The analysis in this document was done by Prowess Consulting and commissioned by AMD.

Methodology | Behind the Report: Do Customers Benefit from Intel® In-Memory Analytics Accelerator (Intel IAA®), and at What Cost?

6)
allowedCPU="189-202"
6)
allowedCPU="203-216"
8)
allowedCPU="217-230"
esac

Stest source/readrandomwriterandomIAA.sh S$rocks path $allowedCPU ${orig db} ${rid}.S${ts}
pass-$i >> S$results dir/rocks pass${i}.raw &
pids[$i]=$!
done
#wait for all to complete
for i in $(seq 8); do
wait “${pids[$i]}”
done
echo “Completed readrandomWriterandom Loop at $(date +%s)” >> S$results dir/progress summary.txt
#tally results
egrep “readrandom|readrandomwriterandom” S$results dir/*.raw >> S$results dir/progress_summary.txt
Monitoring cleanup
killall nmon
kill $power pid

killall iostat

fillSeg-IAA.sh
This script is used to populate RocksDB with Intel IAA test—compatible data.
1. Update SRocksDB_Path to the value on the SUT.
2. Update STestingVol to point to a path on the volume under test.
3. Update SCorpusPath to point to $SourceDir/calgarycorpus.
#!/bin/bash
test dir=$1
rocks path=$RocksDB_Path
mkdir -p /$TestingVol/$test dir
numactl -m 1 -N 1 $rocks_path/db_bench --benchmarks=fillseq
--compression type=com.intel.iaa compressor rocksdb \
--compressor options="execution path=hw” \
--use_existing db=0 \
--db=/rocks/$test _dir \
--wal dir=/$TestingVol/wall/$test dir \
--key size=16 \
--value_size=256 \
--threads=1 \
--block size=4096 \
--arena_block size=16777216 \
--value_src_data_type=file random \
--value_src_data_ file=$CorpusPath/bookl
done

The analysis in this document was done by Prowess Consulting and commissioned by AMD.

10

Methodology | Behind the Report: Do Customers Benefit from Intel® In-Memory Analytics Accelerator (Intel IAA®), and at What Cost?

readRandom-IAA.sh
This script is used for the Intel IAA readRandom RocksDB workload. It assumes that the SUT is testing on CPU 1; update the numactl
line as needed if testing on an alternate processor node.
#!/bin/bash
rocks_path=$1
physcpu=$2
db=$3
numactl -m 1 -N 1 --physcpubind=$physcpu $rocks path/db bench \
--compression_type=com.intel.iaa compressor rocksdb \
--compressor options="execution path=hw” \
--benchmarks="readrandom” \
--threads=25 \
--use_existing db \
--key size=16 \
--value_size=256 \
—--db=$db\

—-duration=180

readrandomwriterandom-lAA.sh
This script is used to initiate the Intel IAA readRandomWriteRandom RocksDB workload. It assumes that the SUT is testing on CPU T,
update the numactl line as needed if testing on an alternate processor node.
#!/bin/bash
rocks_path=$1
physcpu=$2
db=$3
numactl -m 1 -N 1 --physcpubind=$physcpu $rocks path/db bench \
--compression_ type=com.intel.iaa compressor rocksdb \
--compressor options="execution path=hw” \
--benchmarks="readrandomwriterandom” \
--threads=10 \
--use_existing db \
—--db=$db\
--duration=180\
--key size=16 \
--value_size=256 \

--readwritepercent=80

XeonRocksRunner-ZSTD.sh
This script is used to initiate the Zstd compression RocksDB workload and monitoring. The CPU values here assume that CPU 1 is 60-
core hyper-threaded and that it shares a NUMA channel with the volume used for saving data. Update the CPU IDs if needed.

The UUID of the volume used to save the data will need to replace the SDISK_UUID in the following code. The correct path to the
SScriptsDir will also need to be set.

#!/bin/bash

test_source=$3 #### iaa or 1lz4 source directory for test scripts

rid=$2

node_numa=$1

orig db=$4

The analysis in this document was done by Prowess Consulting and commissioned by AMD. 11

Methodology | Behind the Report: Do Customers Benefit from Intel® In-Memory Analytics Accelerator (Intel IAA®), and at What Cost?

rocks path="$Rocks DIR”
ts=$ (date +%s)
results dir="/root/results/${rid}.S${ts}"”
alt node_numa=0
DISK UUID="$TESTDISK UUID”
DISK_ID=" 1ls -lah /dev/disk/by-uuid/ | grep $DISK_UUID | cut -d’/’ -£3°
Run Prep
mkdir -p $results_dir
mkdir -p S$results dir/commands
sync; echo 3 > /proc/sys/vm/drop caches
####HAHAA#A# Start of monitoring needs to go here
numactl -m $alt node numa
numactl -m $alt node numa -N $alt node numa nmon -F $results_dir/nmon.out -s2 -cl100000 -t &
numactl -m $alt _node numa -N $alt node numa iostat -k -t -o JSON -cdx $DISK ID 2 > S$results_dir/
iostat.out &
numactl -m $alt_node numa -N $alt node numa $ScriptDir/power monitor.sh $results_dir &
power pid=$!
declare -a pids
echo “Starting readRandom Loop at $(date +%s)” >> Sresults dir/progress summary.txt
for i in $(seq 4); do
cp -r $Sorig db ${orig db} ${rid}.${ts} pass-$i/
Start run in background

case $i in

1)
allowedCPU="60-85"
2)
allowedCPU="86-111"
3)
allowedCPU="112-119,180-198"
4)

allowedCPU="199-224"
esac
Stest source/readRandomZSTD.sh $rocks path $allowedCPU ${orig db} ${rid}.${ts} pass-$i >>
$results dir/rocks pass${i}-rr.raw &
pids[$i]=$!q
done
for i in $(seq 4); do
echo “
waiting for $i pid ${pids[$i]}

"

wait “${pids[$i]}”

done
echo “Completed readRandom Loop at $(date +%s)” >> S$Sresults dir/progress_ summary.txt
echo “Starting readrandomWriterandom Loop at $(date +%s)” >> $results dir/progress_summary.txt

The analysis in this document was done by Prowess Consulting and commissioned by AMD.

12

Methodology | Behind the Report: Do Customers Benefit from Intel® In-Memory Analytics Accelerator (Intel IAA®), and at What Cost?

for i in $(seq 8); do

case $i in

1)

allowedCPU="60-73"
2)

allowedCPU="74-87"
3)

allowedCPU="88-101"
4)

allowedCPU="101-114"
5)

allowedCPU="114-119,180-188"
6)

allowedCPU="189-202"
7)

allowedCPU="203-216"
8)

allowedCPU="217-230"

esac

$test_source/readrandomwriterandom-zstd.sh $rocks path $allowedCPU ${orig db} ${rid}.s${ts}
pass-$i >> S$results dir/rocks pass${i}-rw.raw &
pids[$i]=$!
done
#wait
for i in $(seq 8); do
wait “${pids[$i]}”
done
echo “Completed readrandomWriterandom Loop at $(date +%s)” >> $results dir/progress_summary.txt
egrep “readrandom|readrandomwriterandom” S$results dir/*.raw >> S$results dir/progress_summary.txt
killall nmon
kill $power pid

killall iostat

AMDRocksRunner-ZSTD.sh
This script is used to initiate the Zstd compression RocksDB workload and monitoring on the AMD instance. The CPU values here

assume that CPU 0 is 112-core hyper-threaded and that it shares a NUMA channel with the volume used for saving data. Update the
CPU IDs if needed.

The UUID of the volume used to save the data will need to replace the STEST_DISK_UUID in the following code. The correct path to
the $ScriptsDir will also need to be set.

The analysis in this document was done by Prowess Consulting and commissioned by AMD. 13

Methodology | Behind the Report: Do Customers Benefit from Intel® In-Memory Analytics Accelerator (Intel IAA®), and at What Cost?

This file is used as a basis for creating three different tests.
a. For the four-read workers, eight-write workers configuration, set ReadCount=4 and WriteCount=8.
b. For the six-read workers, twelve-write workers configuration, set ReadCount=6 and WriteCount=12.
c. For the eight-read workers, sixteen-write workers configuration, set ReadCount=8 and WriteCount=16.
#!/bin/bash

ReadCount=""

WriteCount=""

test_source=$3 #### iaa or 1lz4 source directory for test scripts

rid=$2 ### Name (not path) of directory to save the fillseq data to and pull from in subsequent
tests

node numa=$1 #### node used to restrict cpu/memory

orig db=$4

#rocks path="/rocks/Sources/rocksdb/b4” ## path to the compiled rocks directory
#rocks_path="/rocks/Sources/rocksdb/build_zstd”

rocks path=/click/Source/RocksCorpus/rocksdb/build

ts=$(date +%s)

results dir="/root/IAA results/${rid}.${ts}”

if [“$node numa” -eq 0]; then
alt node numa=1
else
alt node numa=0
fi
DISK UUID="TESTDISK UUID”
DISK_ID=" 1ls -lah /dev/disk/by-uuid/ | grep $DISK_UUID | cut -d’/’ -£3°
Run Prep
mkdir -p $results_dir
mkdir -p S$results dir/commands
sync; echo 3 > /proc/sys/vm/drop caches
numactl -m $alt node numa -N $alt node numa nmon -F $results_dir/nmon.out -s2 -c100000 -t &
numactl -m $alt _node numa -N $alt node numa iostat -k -t -o JSON -cdx $DISK ID 2 > S$results_dir/
iostat.out &
numactl -m $alt _node numa -N $alt node numa $ScriptsDir/power monitor.sh $results_dir &
power pid=$!
declare -a pids
echo “Starting readRandom Loop at $(date +%s)” >> Sresults dir/progress_ summary.txt
for i in $(seqg $ReadCount); do
#copy base data set
cp -r $orig db ${orig db} ${rid}.${ts} pass-$i/

case $i in

1)

allowedCPU="1-25"
2)

allowedCPU="26-50"
3)

The analysis in this document was done by Prowess Consulting and commissioned by AMD.

14

Methodology | Behind the Report: Do Customers Benefit from Intel® In-Memory Analytics Accelerator (Intel IAA®), and at What Cost?

allowedCPU="51-75"

rr

4)
allowedCPU="76-100"
5)
allowedCPU="101-111,224-239"
6)
allowedCPU="240-265"
7)
allowedCPU="266-291"
8)
allowedCPU="292-316"
esac
echo “using command: Stest_source/readRandomZSTD.sh $rocks path $allowedCPU ${orig

db} ${rid}.s${ts} pass-$i >> $results dir/rocks pass${i}.raw”
Stest _source/readRandomZSTD.sh S$rocks path $allowedCPU ${orig db} ${rid}.${ts} pass-$i >>
$results dir/rocks pass${i}.raw &
pids[$i]=$!
done
for i in $(seqg $ReadCount); do
wait “${pids[$i]}”

done
echo “Completed readRandom Loop at $(date +%s)” >> S$results dir/progress_summary.txt
echo “Starting readrandomWriterandom Loop at $(date +%s)” >> S$results dir/progress summary.txt

for i in $(seq $WriteCount); do

case $i in

1)

allowedCPU="1-13"
2)

allowedCPU="14-26"
3)

allowedCPU="27-39"
4)

allowedCPU="40-52"
5)

allowedCPU="53-65"
6)

allowedCPU="66-78"

The analysis in this document was done by Prowess Consulting and commissioned by AMD.

Methodology | Behind the Report: Do Customers Benefit from Intel® In-Memory Analytics Accelerator (Intel IAA®), and at What Cost?

rr

6)

allowedCPU="79-91"
8)

allowedCPU="92-104"
9)

allowedCPU="105-111,224-229"
10)

allowedCPU="230-242"
11)

allowedCPU="243-255"
12)

allowedCPU="256-268"
13)

allowedCPU="269-281"
14)

allowedCPU="282-294"
15)

allowedCPU="295-307"
16)

allowedCPU="308-320"
i
esac
Stest source/readrandomwriterandomZSTD.sh $rocks path $allowedCPU ${orig db} ${rid}.s${ts}
pass-$i >> S$results dir/rocks pass${i}.raw &
pids[$i]=$!
done
for i in $(seq S$WriteCount); do
wait “${pids[$i]}”
done
echo “Completed readrandomWriterandom Loop at $(date +%s)” >> $results dir/progress_summary.txt
egrep “readrandom|readrandomwriterandom” S$results _dir/*.raw >> S$results dir/progress_summary.txt
killall nmon
kill $power pid
killall iostat

The analysis in this document was done by Prowess Consulting and commissioned by AMD.

16

Methodology | Behind the Report: Do Customers Benefit from Intel® In-Memory Analytics Accelerator (Intel IAA®), and at What Cost?

fillSeq-ZSTD.sh

This script is used to populate the Zstd data into RocksDB.

1. Update SRocksDB_Path to the value on the SUT.

2. Update STestingVol to point to a path on the volume under test, such as the $SSourceDir.
3. Update SCorpusPath to point to the SSourceDir/calgarycorpus.

This file can be used for the initialization of both the Intel and AMD processor—based instances’ Zstd datasets.
#!/bin/bash
test_dir=$1
rocks path=$RocksDB_Path
mkdir -p /$TestingVol/$test dir
numactl -m 1 -N 1 $rocks_path/db_bench --benchmarks=fillseq \
--use_existing db=0 \
--db=/$TestingVol/$test dir \
--compression_type="zstd” \
--wal_dir=/$TestingVol/wall/$test_dir \
--key_size=16 \
--value size=256 \
--threads=1 \
--block _size=4096 \
--arena_block size=16777216 \
--value src_data_ type=file random \

--value_src_data_file=$CorpusPath/bookl

readRandom-ZSTD.sh
This script is used for both the Intel and AMD processor—based instances’ Zstd compression readRandom tests.
#!/bin/bash
rocks path=§1
physcpu=$2
db=$3
#physcpu="0-25"
numactl --physcpubind=$physcpu $rocks path/db bench \
--compression_type="zstd” \
--benchmarks="readrandom” \
--threads=25 \
--use_existing db \
--db=$db\
--duration=180 \
--key_size=16 \

--value size=256

readrandomwriterandom-ZSTD.sh
This script is used for both the Intel and AMD processor—based instances’ Zstd readRandom/WriteRandom compression tests.
#!/bin/bash
rocks_path=$1
physcpu=$2
db=$3
numactl -m 0 --physcpubind=$physcpu $rocks path/db bench \

The analysis in this document was done by Prowess Consulting and commissioned by AMD.

17

Methodology | Behind the Report: Do Customers Benefit from Intel® In-Memory Analytics Accelerator (Intel IAA®), and at What Cost?

--compression_type="zstd” \
--benchmarks="readrandomwriterandom” \
--threads=10 \

--use_existing db \

--db=$db\

--key size=16 \

--value_size=256 \

--duration=180\

--readwritepercent=80

Optimizations.sh
This script is used to set disk optimizations. It should be run after rebooting and prior to any testing.
1. Replace STestingDisk_UUID with the UUID of the disk used in testing.
echo 100 > /sys/devices/system/cpu/intel_pstate/min_perf pct
UUID="$TestingDisk UUID”
nvme id="1ls -1 /dev/disk/by-uuid/ | grep $UUID | cut -d’>’ -f2 | cut -d/ -£3°
echo deadline > /sys/block/$nvme_ id/queue/scheduler
echo 8 > /sys/block/$nvme_ id/queue/read_ahead kb
swapoff --all
echo 0 > /proc/sys/vm/zone_reclaim mode
for eachCPU in ~1ls /sys/devices/system/cpu/cpu*/cpufreq/scaling governor™ ;do
[-f SeachCPU] || continue
echo -n performance > $eachCPU
done
ulimit -c unlimited

ulimit -n 1000000

1 See [E1] at www.intel.com/performanceindex.

The analysis in this document was done by Prowess Consulting and g ID R O N E S S

commissioned by AMD.
Results have been simulated and are provided for informational purposes only. Prowess and the Prowess logo are trademarks of Prowess Consulting, LLC.
Any difference in system hardware or software design or configuration may Copyright © 2024 Prowess Consulting, LLC. All rights reserved.

affect actual performance. .
P Other trademarks are the property of their respective owners.

0624/230243

http://www.intel.com/performanceindex

