
Use Java Development Kit (JDK®) benchmarking results to make
evidence-based management decisions that help you achieve

optimal performance from cloud-native applications.

Java-Based Benchmarking Shines a Light
on How Underlying Architecture Impacts

Cloud Performance

Technical Research Report

The point of benchmarking is to translate lab results into
actionable business decisions. For example, say you want
improved performance from cloud-native, Java-based
applications. Benchmarking can help you make decisions about
purchasing software and hardware and provisioning resources
backed by evidence.

It is a given that improving workload performance in the cloud
can help satisfy your customers’ ever-growing appetite for fast,
accurate data delivery. Customers who get stuck with a slow or
faltering experience while performing search queries, watching
media streams, or accessing medical or financial information
might soon take their business elsewhere. Of course, improved
performance is only one reason why so many organizations have
migrated workloads such as Elasticsearch®, Apache Cassandra®,
and Apache Spark™ to the cloud. Organizations of all sizes are
using cloud-based platforms to stay competitive, meet
service-level agreements (SLAs), and lower total cost of
ownership (TCO).

Applying benchmarking best practices, Prowess Consulting
tested cloud-native applications to surface underlying factors
affecting workload performance, including Java Development
Kit (JDK®) version, CPU type, and instance size. Benchmark
testing of Java-based workloads in an Amazon® Elastic Compute
Cloud™ (Amazon EC2®) environment revealed that using the
latest long-term support (LTS) release of JDK improved the
overall performance of Java-based applications across CPU
types and instance sizes. Testing revealed that cloud instances
powered by Intel® Xeon® Scalable processors consistently
outperformed those powered by Amazon Web Services® (AWS®)
Graviton2 and AMD EPYC™ processors.

The workload performance improvements showed variations
among different instance sizes, which suggests that when
provisioning cloud instances, you should consider instance-size-
related memory and networking requirements, in addition to
compute performance.

Executive Summary

Technical Research Study | Java-Based Benchmarking Shines a Light on How Underlying Architecture Impacts Cloud Performance

2

Market and Technology Trends
At Prowess, the point of benchmarking is translating lab results into actionable decisions that your business can implement in the
real world. More than ever before, organizations need optimal performance from their cloud-native and web-based applications built
on Java. As an IT decision maker, you are tasked with making decisions about application management and workload placement to
achieve the desired performance outcomes. Before making consequential decisions, you want to be informed by evidence, such as
workload benchmarking.

It’s no secret that successful organizations count on cloud-native applications such as Elasticsearch, Apache Cassandra,
and Apache Spark to process vast volumes of data coming from a variety of sources and packaged in different formats. They
provision cloud-based resources to support social media and messaging services, Internet of Things (IoT) sensors, threat analysis
and fraud-detection monitoring, user-activity tracking and analytics, confidential computing for medical and financial databases,
streaming media user personalization, ecommerce search engines and purchase recommendations, artificial intelligence (AI)-driven
language processing and translation, high-performance computing (HPC) for scientific research, and many other services.

Even with these robust cloud-based solutions at your disposal, getting the insights you need and delivering the services your
customers demand can be a challenge. To meet your business goals, you need answers to best-practices questions, such as: How
is cloud-native application performance affected by software version? What hardware configuration delivers optimal Java-based
workload performance? Do these performance differences exist over a range of cloud-instance sizes?

To get some of these questions answered, Prowess designed benchmarking tests that would examine how cloud-native application
performance is impacted by these key variables:

1.	 JDK version
2.	 Data workload
3.	 Processor type

We selected Amazon EC2 as the benchmarking environment because AWS is the most widely used cloud platform across the globe,
with Amazon EC2 being one of AWS’ fastest growing services.10

10%
for Elasticsearch®¹

4%
for Apache Cassandra®²

19%
for Apache Spark™³

Upgrading to the latest supported
LTS release of JDK® can
immediately and significantly
boost the performance of
cloud-native applications up to …

26%
for Elasticsearch®4

27%
for Apache Cassandra®5

49%
for Apache Spark™6

Cloud-native applications run
better on 3rd Gen Intel® Xeon®
Scalable processors than on AWS®
Graviton2 processors, up to …

8%
for Elasticsearch®7

13%
for Apache Cassandra®8

12%
for Apache Spark™9

Cloud-native applications run
better on 3rd Gen Intel® Xeon®
Scalable processors than on AMD
EPYC™ processors, up to …

Technical Research Study | Java-Based Benchmarking Shines a Light on How Underlying Architecture Impacts Cloud Performance

3

Table 1 | Hardware (platform architecture), Java Development Kit (JDK®) versions, data workloads, and Amazon® Elastic Compute Cloud™ (Amazon EC2®)
instance sizes used in testing

Measuring Workload Performance for JDK Version, Application,
Processor Hardware, and Instance Size
Prowess engineers selected three Java-based workloads for benchmark testing, all of which require the installation of JDK. To
examine the effects of the latest supported LTS release of JDK, we set up an Amazon EC2 testing environment using a 3rd Gen
Intel Xeon Scalable processor with LTS JDK 8 or LTS JDK 11 as the baseline, depending on the benchmark being run. Next, we
upgraded the Amazon EC2 instance on the same Java virtual machine (JVM) to the latest LTS JDK 11 or LTS JDK 17, depending
on the workload. This helped identify performance improvements that could be gained from a simple Java upgrade.

To analyze cloud-native applications' performance, we ran workload benchmarks for three popular Java-based applications.
Elasticsearch is an open-source search and analytics engine used to rapidly access and analyze huge volumes of data. Apache
Cassandra is an open-source, scalable NoSQL database favored for its fast read-/write-operations on large volumes of data. The
open-source Apache Spark framework is particularly well-suited for handling HPC and big data analytics, which process massive
volumes of data, packaged in a variety of formats, and coming from multiple sources.

Our engineers selected the M6 instance for testing because this Amazon EC2 instance family is popular for running a diverse
variety of general-purpose workloads. Also, their inherent stability makes M6 instances useful for comparing baseline and testing
performance.11 We tested three instance sizes—xlarge, 4xlarge, and 16xlarge—to facilitate the analysis of performance changes for
small, medium, and large instance sizes.

To analyze workload performance for three of the most popular cloud-platform CPUs, we tested Intel Xeon Scalable, AMD EPYC, and
AWS Graviton2 processors. Intel Xeon Scalable and AMD EPYC processors are designed for x86 data center architectures, and
AWS Graviton2 processors for ARM® architectures. Table 1 summarizes the hardware, JDK versions, workloads, and instances that
we tested.

Testing Assumptions and System Configurations
Prowess engineers established a number of conditions and assumptions to help ensure workload testing emulated enterprise-scale
deployments and that the results could be applied to real-world conditions. Following network-security best practices, we deployed
authentication and Transport Layer Security (TLS)/Secure Sockets Layer (SSL) encryption during testing. We used separate Amazon
EC2 logins for individual sets of testing parameters. After testing, we powered down the cloud instances to avoid incurring compute
costs that would inflate the results.

Our engineers chose to compare JDK 8, 11, and 17 because these are the LTS versions typically run in enterprise data centers.12
Elasticsearch was tested on JDK 11 to establish baseline values, and then on JDK 17 for comparison. The Apache Cassandra data
platform and the HiBench benchmark do not currently support JDK 17, so we ran these baseline and testing workloads on JDK 8
and JDK 11, respectively.13

Hardware (architecture) JDK® version Workload (benchmark) Instance size

3rd Gen Intel® Xeon® Scalable
processor (x86)

JDK 11, JDK 17 Elasticsearch® (Rally) m6i.xlarge
m6i.4xlarge
m6i.16xlargeJDK 8, JDK 11 Apache Cassandra® (Cassandra)*

Apache Spark™ (HiBench)*

Amazon Web Services® (AWS®)
Graviton2 processor (ARM®)

JDK 17 Elasticsearch (Rally) m6g.xlarge
m6g.4xlarge
m6g.16xlargeJDK 11

Apache Cassandra (Cassandra)*
Apache Spark (HiBench)*

AMD EPYC™ processor (x86)
JDK 17 Elasticsearch (Rally) m6a.xlarge

m6a.4xlarge
m6a.16xlargeJDK 11

Apache Cassandra (Cassandra)*
Apache Spark (HiBench)*

*The Apache Cassandra data platform and the HiBench benchmark do not currently support JDK 17, so the control and testing workloads were run on JDK 8 and JDK 11.

Technical Research Study | Java-Based Benchmarking Shines a Light on How Underlying Architecture Impacts Cloud Performance

4

Table 2 | System configurations and benchmarks used for performance testing

Intel® Xeon® Scalable processor AMD EPYC™ processor Amazon Web Services® (AWS®)
Graviton2 processor

Architecture x86 x86 ARM®

CPU
1 x Intel Xeon

Platinum 8375C processor
1 x AMD EPYC

7R13 processor 1 x AWS Graviton2 processor

Frequency (Base/SCT/MCT) 2.9 GHz/3.5 GHz turbo 2.9 GHz/3.5 GHz turbo 2.5 GHz

Instance sizes: vCPUs
m6.xlarge: 4

m6.4xlarge: 16
m6.16xlarge: 64

Instance sizes: cores/threads
m6i.xlarge: 8/16

m6i.4xlarge: 128/256
m6i.16xlarge: 2,048/4,096

m6a.xlarge: 8/128
m6a.4xlarge: 32/512

m6a.16xlarge: 128/2,048

m6g.xlarge: 4/1
m6g.4xlarge: 16/1
m6g.16xlarge 64/1

Storage controller Amazon® Elastic Block Store (EBS)

Disk /dev/nvme0

Number of disks 1 x 200 GB VHD

Operating system (OS) version Ubuntu® 20.04

OS kernel 5.15.0-1011-aws 5.13.0-1029-aws 5.13.0-1029-aws

Amazon® Elastic
Compute Cloud™
(Amazon EC2®) locations

Oregon Northern California Northern California

JDK® versions
 JDK 8 version “1.8.0_312”
 JDK 11.0.15 2022-04-19
 JDK 17.0.3 2022-04-19

 JDK 11.0.15 2022-04-19
 JDK 17.0.3 2022-04-19

Workloads (benchmarks)
Elasticsearch® (Rally 2.6.0)

Apache Cassandra® (Cassandra 3.11.13)
Apache Spark™ (HiBench 7.1.1)

Security Encryption, TLS/SSL, authentication

We tested the smallest instance size first, with incrementally larger instance sizes tested next using the same JDK and hardware
configurations. For example, Elasticsearch benchmark testing for JDK 11 running on a 3rd Gen Intel Xeon Scalable processor
started with an M6i.xlarge instance. Using the same software and hardware configurations, we tested the benchmark on an
M6i.4xlarge instance size next, followed by an M6i.16xlarge instance size. Table 2 shows the system configurations we used for
the benchmark testing.

Imagine What You Could You Do with Faster Cloud Performance
In the war for market share, latency kills. This is what drives top social-media sites, news outlets, and other cloud-native companies
to rely on the Elasticsearch search engine to sort through massive volumes of data and deliver answers in milliseconds.14,15 These
companies understand that users are notoriously impatient and will switch to other tasks—or worse, another app—if they do not get
their answers delivered in near real time. Based on benchmark testing, upgrading from JDK 11 to JDK 17 will deliver up to 13 percent
faster search query results for cloud instances powered by 3rd Gen Intel Xeon Scalable processors.1

Technical Research Study | Java-Based Benchmarking Shines a Light on How Underlying Architecture Impacts Cloud Performance

5

Apache Cassandra is a NoSQL database that delivers high-speed data storage and access,16 which is why streaming-media
companies count on Apache Cassandra in the cloud to meet customers' strict SLAs. They need a database that can meet strict
media-delivery requirements, such as latency of no more than a few seconds and failure of one-thousandth of a percent.17 Based
on Prowess testing, Instagram users could experience smoother video streaming that runs up to 42 percent faster using JDK 11 on
cloud instances powered by 3rd Gen Intel Xeon Scalable processors, compared to AWS Graviton2 processors, and up to 50 percent
faster compared to AMD EPYC processors.18

Apache Spark is deployed in life-sciences research to handle complex data analytics, such as high-throughput genome sequencing,
using a hybrid cloud. For example, an Apache Spark pipeline can reduce genomic analysis time by more than 4.5x.19 With 3rd Gen Intel
Xeon Scalable processors, researchers could potentially reduce pipeline latency up to an additional 49 percent compared to using
AWS Graviton2 processors, and up to 27 percent compared to using AMD EPYC processors.20

Benchmarking Results Reveal Standouts in Amazon EC2 Performance
For this study, Prowess engineers proposed the following hypotheses:

1.	 Upgrading to the latest JDK LTS version would improve workload performance for the following cloud-native applications:
Elasticsearch, Apache Cassandra, and Apache Spark.

2.	 Running on the latest JDK LTS versions, cloud instances powered by Intel Xeon Scalable processors would outperform cloud
instances powered by AWS Graviton2 and AMD EPYC processors.

Prowess engineers used best-practices application-level testing to help surface underlying architecture, software, and infrastructure
limitations that might impact cloud performance. To evaluate cloud-native applications' performance after upgrading the JDK
version, we compared the performance of Elasticsearch, Apache Cassandra, and Apache Spark workloads on Intel Xeon Scalable
processor–powered instances. We compared LTS releases of JDK 8 (baseline) and JDK 11 (testing) for Elasticsearch workloads and
JDK 11 (baseline) and JDK 17 (testing) for Apache Cassandra and Apache Spark workloads. To analyze the comparative workload
performance of other mainstream data-center CPUs, our engineers tested Intel Xeon Scalable processors against AMD EPYC and
AWS Graviton2 processors.

Benchmark testing confirmed our engineers’ original hypothesis. Overall, the workloads showed improved performance after
upgrading the JDK versions. Workloads on instances powered by Intel Xeon Scalable processors performed consistently better than
instances powered by AMD EPYC or AWS Graviton2 processors.

Upgrading to the Latest JDK LTS Version Improves Cloud-Based
Workload Performance
Elasticsearch, Apache Cassandra, and Apache Spark benchmarking results supported Prowess engineers’ first hypothesis—upgrading
to the latest JDK LTS release improves workload performance across a variety of Java-based data platforms. For the purposes of this
technical research report, the charts present 4xlarge instance-size results. Out of the nine workload benchmarks run in total (three
workloads x three instance sizes), only one workload test showed a minor performance dip after the JDK LTS upgrade.21 Raw data
values for all workloads and instance sizes are included in the endnotes at the end of this report.

As illustrated in Figure 1, our test results reveal that after upgrading to the latest LTS JDK release:
•	 Elasticsearch workloads performed up to 10 percent better.1
•	 Apache Cassandra workloads performed up to 4 percent better.2

•	 Apache Spark workloads performed up to 19 percent faster.3

Technical Research Study | Java-Based Benchmarking Shines a Light on How Underlying Architecture Impacts Cloud Performance

6

Figure 1. The performance of Elasticsearch®, Apache Cassandra®, and Apache Spark™ workloads improved after upgrading to the latest LTS Java Development Kit (JDK®) release

Figure 2. Elasticsearch®, Apache Cassandra®, and Apache Spark™ workloads run faster and better on M6i instances powered by 3rd Gen Intel® Xeon® Scalable processors
than on M6g instances powered by Amazon Web Services® (AWS®) Graviton2 processors

3rd Gen Intel® Xeon® Scalable processor (Intel Xeon Platinum 8375C processor)

Th
ro

ug
hp

ut
 (h

ig
he

r i
s

be
tte

r)

Elasticsearch®

Java Development Kit (JDK®) 17

m6i.4xlarge

1.20

1.00

0.80

0.60

0.40

0.20

0.00

JDK 11

JDK 17

JDK 8

JDK 11

10% better
with JDK 17

Ra
te

 (h
ig

he
r i

s
be

tte
r)

Apache Cassandra®

JDK 11

m6i.4xlarge

1.20

1.00

0.80

0.60

0.40

0.20

0.00

JDK 8

4% better
with JDK 11

La
te

nc
y

(lo
w

er
 is

 b
et

te
r)

Apache Spark™
JDK 11

m6i.4xlarge

1.20

1.00

0.80

0.60

0.40

0.20

0.00

JDK 8
19% faster

with JDK 11

Amazon Web Services® (AWS) Graviton2 processor versus 3rd Gen Intel Xeon Scalable processor

 L
at

en
cy

 (l
ow

er
 is

 b
et

te
r)

Elasticsearch®

Java Development Kit (JDK®) 17

m6.4xlarge

1.20

1.00

0.80

0.60

0.40

0.20

0.00

Intel® Xeon® Platinum 8375C processor

AWS® Graviton2 processor

Base
26% faster

Ra
te

 (h
ig

he
r i

s
be

tte
r)

Apache Cassandra®

JDK 11

m6.4xlarge

Base

27% better

 T
hr

ou
gh

pu
t (

hi
gh

er
 is

 b
et

te
r)

Apache Spark™
JDK 11

m6.4xlarge

1.60

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00

Base

49% better

The Difference Is Clear … Cloud-Native Applications Running on
Instances with Intel® Processors Significantly Outperform Those on
AWS Graviton® and AMD EPYC™ Processors
Testing results also supported Prowess engineers’ second hypothesis—with the latest JDK LTS versions, cloud instances powered by
Intel Xeon Scalable processors outperformed cloud instances powered by AWS Graviton2 and AMD EPYC processors.

As with the JDK LTS upgrade results, our charts and discussion here present 4xlarge instance size results. Out of 18 benchmarks run
in total (three workloads x three instance sizes x two CPU-versus-CPU comparisons), the results revealed that all workloads running
on Intel Xeon Scalable processor–powered instances consistently outperformed workloads on AWS Graviton2 processor–powered
instances and AMD EPYC processor–powered instances. Raw data values for all workloads and instance sizes are included in the
endnotes at the end of this report. These results suggest that optimizations for Intel® architecture included in the latest JDK releases
could be providing Intel Xeon Scalable processors with additional benefits that might not be accessible to other CPUs.

As illustrated in Figure 2, our test results reveal that with the latest LTS JDK release, Intel Xeon Scalable processor–powered
instances outperformed AWS Graviton2 processor–powered instances:
•	 Elasticsearch workloads performed up to 26 percent faster.4

•	 Apache Cassandra workloads performed up to 27 percent better.5

•	 Apache Spark workloads performed up to 49 percent better.6

Technical Research Study | Java-Based Benchmarking Shines a Light on How Underlying Architecture Impacts Cloud Performance

7

As illustrated in Figure 3, our test results reveal that with the latest LTS JDK release, Intel Xeon Scalable processor–powered instances
outperformed AMD EPYC processor–powered instances:
•	 Elasticsearch workloads performed up to 8 percent faster.7

•	 Apache Cassandra workloads performed up to 13 percent faster.8

•	 Apache Spark workloads performed up to 12 percent better.9

Figure 3. Elasticsearch®, Apache Cassandra®, and Apache Spark™ workloads run faster and better on M6i instances powered by 3rd Gen Intel® Xeon® Scalable processors
than on M6a instances powered by AMD EPYC™ processors

AMD EPYC processor versus 3rd Gen Intel Xeon Scalable processor

 L
at

en
cy

 (l
ow

er
 is

 b
et

te
r)

Elasticsearch®

Java Development Kit (JDK®) 17

m6.4xlarge

1.20

1.00

0.80

0.60

0.40

0.20

0.00

Intel® Xeon® Platinum 8375C processor

AMD EPYC™ 7R13 processor

1.20

1.00

0.80

0.60

0.40

0.20

0.00

1.20

1.00

0.80

0.60

0.40

0.20

0.00

Base
La

te
nc

y
(lo

w
er

 is
 b

et
te

r)

Apache Cassandra®

JDK 11

m6.4xlarge

Base

Th
ro

ug
hp

ut
 (h

ig
he

r i
s

be
tte

r)

Apache Spark™
JDK 11

m6.4xlarge

Base

12% better

8% faster
13% faster

A Compelling Case for Running Cloud-Native Applications on the
Latest JDK Version
Prowess benchmark testing of Elasticsearch, Apache Cassandra, and Apache Spark workloads confirmed the original hypothesis,
that web-based applications will likely run best on the latest supported JDK LTS version. The test results also indicate that
general-computing cloud instances will perform better when powered by Intel Xeon Scalable processors than when powered by
AWS Graviton2 and AMD EPYC processors. These results translate to a faster, more responsive user experience for your customers.

Prowess best-practices guidance for cloud-instance deployments recommends using application-level benchmarking results as a
reliable starting point, and then provisioning the instance size to meet the computing, networking, or memory requirements of your
specific workloads, datasets, or virtual machines (VMs).

Learn More

Learn more about how Intel Xeon Scalable processors can
unlock the potential of your cloud computing.

https://www.intel.com/content/www/us/en/cloud-computing/overview.html

Technical Research Study | Java-Based Benchmarking Shines a Light on How Underlying Architecture Impacts Cloud Performance

8

1 Elasticsearch® results for the 4xlarge instance size. xlarge: Up to 13 percent performance improvement as measured by ES Rally HTTP Logs Median Throughput
 benchmark testing in June 2022 of a 3rd Gen Intel® Xeon® Platinum 8375C processor. JDK® 11: m6i.xlarge = 81,975.0700. JDK 17: m6i.xlarge = 92,789.0700.
 4xlarge: Up to 10 percent performance improvement as measured by ES Rally HTTP Logs Median Throughput benchmark testing in June 2022 of a 3rd Gen
 Intel Xeon Platinum 8375C processor. JDK 11: m6i.4xlarge = 265,696.7000. JDK 17: m6i.4xlarge = 292,641.6400. 16xlarge: Up to 13 percent performance
 improvement as measured by ES Rally HTTP Logs Median Throughput benchmark testing in June 2022 of a 3rd Gen Intel Xeon Platinum 8375C processor.
 JDK 11: m6i.16xlarge = 329,257.5000. JDK 17: m6i.16xlarge = 372,954.5100. See Table 2 for full system configuration and benchmark testing information.
2 Apache Cassandra® results for the 4xlarge instance size. xlarge: Up to 5 percent performance improvement as measured by Cassandra Read-Op
 Rate benchmark testing in June 2022 of a 3rd Gen Intel® Xeon® Platinum 8375C processor. JDK® 8: m6i.xlarge = 26,793.0000. JDK 11: m6i.xlarge =
 28,145.0000. 4xlarge: Up to 4 percent performance improvement as measured by Cassandra Read-Op Rate benchmark testing in June 2022 of a 3rd Gen
 Intel Xeon Platinum 8375C processor. JDK 8: m6i.4xlarge = 54,597.0000. JDK 11: m6i.4xlarge = 56,922.0000. 16xlarge: Up to 6 percent performance
 regression as measured by Cassandra Read-Op Rate benchmark testing in June 2022 of a 3rd Gen Intel Xeon Platinum 8375C processor. JDK 8:
 m6i.16xlarge = 107,294.0000. JDK 11: m6i.16xlarge = 101,108.0000. See Table 2 for full system configuration and benchmark testing information.
3 Apache Spark™ results for the 4xlarge instance size. xlarge: Up to 4 percent performance improvement as measured by HiBench Spark Duration Linear
 Regression benchmark testing in June 2022 of a 3rd Gen Intel® Xeon® Platinum 8375C processor. JDK® 8: m6i.xlarge = 188.9880. JDK 11: m6i.xlarge =
 182.2210. 4xlarge: Up to 19 percent performance improvement as measured by HiBench Spark Duration Linear Regression benchmark testing in June 2022
 of a 3rd Gen Intel Xeon Platinum 8375C processor. JDK 8: m6i.4xlarge = 66.6430. JDK 11: m6i.4xlarge = 56.0280. 16xlarge: Up to 112 percent performance
 improvement as measured by HiBench Spark Duration Linear Regression benchmark testing in June 2022 of a 3rd Gen Intel Xeon Platinum 8375C
 processor. JDK 8: m6i.16xlarge = 65.5560. JDK 11: m6i.16xlarge = 31.4330. See Table 2 for full system configuration and benchmark testing information.
4 Elasticsearch® results for the 4xlarge instance size. xlarge: Up to 4 percent performance improvement as measured by ES Rally NYC Taxi 50th Percentile Latency
 benchmark testing in June 2022 of a 3rd Gen Intel® Xeon® Platinum 8375C processor and an Amazon Web Services® (AWS®) Graviton2 processor. Intel Xeon
 Platinum 8375C processor (JDK® 11): m6i.xlarge = 1,617.5520. AWS Graviton2 (JDK 11): m6g.xlarge = 1,672.1400. 4xlarge: Up to 26 percent performance improvement
 as measured by ES Rally NYC Taxi 50th Percentile Latency benchmark testing in June 2022 of a 3rd Gen Intel Xeon Platinum 8375C processor and an Amazon
 Web Services (AWS) Graviton2 processor. Intel Xeon Platinum 8375C processor (JDK 11): m6i.4xlarge = 434.6317. AWS Graviton2 (JDK 11): m6g.4xlarge =
 546.8501. 16xlarge: Up to 61 percent performance improvement as measured by ES Rally NYC Taxi 50th Percentile Latency benchmark testing in June 2022 of
 a 3rd Gen Intel Xeon Platinum 8375C processor and an Amazon Web Services (AWS) Graviton2 processor. Intel Xeon Platinum 8375C processor (JDK 11):
 m6i.16xlarge = 347.1408. AWS Graviton2 (JDK 11): m6g.16xlarge = 551.3300. See Table 2 for full system configuration and benchmark testing information.
5 Apache Cassandra® results for the 4xlarge instance size. xlarge: Up to 42 percent performance improvement as measured by Cassandra Write-Op Rate
 benchmark testing in June 2022 of a 3rd Gen Intel® Xeon® Platinum 8375C processor and an Amazon Web Services® (AWS®) Graviton2 processor. Intel Xeon
 Platinum 8375C processor (JDK® 11): m6i.xlarge = 21,900.0000. AWS Graviton2 (JDK 11): m6g.xlarge = 15,377.0000. 4xlarge: Up to 27 percent performance
 improvement as measured by Cassandra Write-Op Rate benchmark testing in June 2022 of a 3rd Gen Intel Xeon Platinum 8375C processor and an Amazon
 Web Services (AWS) Graviton2 processor. Intel Xeon Platinum 8375C processor (JDK 11): m6i.4xlarge = 51,733.0000. AWS Graviton2 (JDK 11): m6g.4xlarge
 = 40,446.00. 16xlarge: Up to 31 percent performance improvement as measured by Cassandra Write-Op Rate benchmark testing in June 2022 of a 3rd Gen
 Intel Xeon Platinum 8375C processor and an Amazon Web Services (AWS) Graviton2 processor. Intel Xeon Platinum 8375C processor (JDK 11): m6i.16xlarge
 = 92,840.0000. AWS Graviton2 (JDK 11): m6g.16xlarge = 70,622.00. See Table 2 for full system configuration and benchmark testing information.
6 Apache Spark™ results for the 4xlarge instance size. xlarge: Up to 16 percent performance improvement as measured by HiBench Spark Throughput K-means
 benchmark testing in August 2022 of a 3rd Gen Intel® Xeon® Platinum 8375C processor and an Amazon Web Services® (AWS®) Graviton2 processor. Intel Xeon
 Platinum 8375C processor (JDK® 11): m6i.xlarge = 101,090.0000. AWS Graviton2 (JDK 11): m6g.xlarge = 87,029.00. 4xlarge: Up to 49 percent performance improvement
 as measured by HiBench Spark Throughput K-means benchmark testing in August 2022 of a 3rd Gen Intel Xeon Platinum 8375C processor and an Amazon
 Web Services (AWS) Graviton2 processor. Intel Xeon Platinum 8375C processor (JDK 11): m6i.4xlarge = 154,470.0000. AWS Graviton2 (JDK 11): m6g.4xlarge
 = 103,280.00. 16xlarge: Up to 38 percent performance improvement as measured by HiBench Spark Throughput K-means benchmark testing in August 2022 of
 a 3rd Gen Intel Xeon Platinum 8375C processor and an Amazon Web Services (AWS) Graviton2 processor. Intel Xeon Platinum 8375C processor (JDK 11):
 m6i.16xlarge = 148,546.0000. AWS Graviton2 (JDK 11): m6g.16xlarge = 106,937.00. See Table 2 for full system configuration and benchmark testing information.
7 Elasticsearch® results for the 4xlarge instance size. xlarge: Up to 7 percent performance improvement as measured by ES Rally HTTP Logs Median Cumulative Indexing
 Time Across Primary Shards benchmark testing in June 2022 of a 3rd Gen Intel® Xeon® Platinum 8375C processor and an AMD EPYC™ 7R13 processor. Intel Xeon
 Platinum 8375C processor (JDK® 11): m6i.xlarge = 1.1257. AMD EPYC 7R13 processor (JDK 11): m6a.xlarge = 1.1980. 4xlarge: Up to 8 percent performance improvement
 as measured by ES Rally HTTP Logs Median Cumulative Indexing Time Across Primary Shards benchmark testing in June 2022 of a 3rd Gen Intel Xeon Platinum
 8375C processor and an AMD EPYC 7R13 processor. Intel Xeon Platinum 8375C processor (JDK 11): m6i.4xlarge = 1.3513. AMD EPYC 7R13 processor (JDK 11):
 m6a.4xlarge = 1.4599. 16xlarge: Up to 19 percent performance improvement as measured by ES Rally HTTP Logs Median Cumulative Indexing Time Across Primary
 Shards benchmark testing in June 2022 of a 3rd Gen Intel Xeon Platinum 8375C processor and an AMD EPYC 7R13 processor. Intel Xeon Platinum 8375C processor
 (JDK 11): m6i.16xlarge = 1.1672. AMD EPYC 7R13 processor (JDK 11): m6a.16xlarge = 1.3838. See Table 2 for full system configuration and benchmark testing information.
8 Apache Cassandra® results for the 4xlarge instance size. xlarge: Up to 36 percent performance improvement as measured by Cassandra Write Latency Median benchmark
 testing in June 2022 of a 3rd Gen Intel® Xeon® Platinum 8375C processor and an AMD EPYC™ 7R13 processor. Intel Xeon Platinum 8375C (JDK® 11): m6i.xlarge = 5.1000.
 AMD EPYC 7R13 (JDK 11): m6a.xlarge = 6.90. 4xlarge: Up to 13 percent performance improvement as measured by Cassandra Write Latency Median benchmark testing
 in June 2022 of a 3rd Gen Intel Xeon Platinum 8375C processor and an AMD EPYC 7R13 processor. Intel Xeon Platinum 8375C processor (JDK 11): m6i.4xlarge =
 1.5000. AMD EPYC 7R13 processor (JDK 11): m6a.xlarge = 1.70. 16xlarge: Up to 100 percent performance improvement as measured by Cassandra Write Latency Median
 benchmark testing in June 2022 of a 3rd Gen Intel Xeon Platinum 8375C processor and an AMD EPYC 7R13 processor. Intel Xeon Platinum 8375C processor (JDK
 11): m6i.16xlarge = 0.6000. AMD EPYC 7R13 processor (JDK 11): m6a.16xlarge = 1.20. See Table 2 for full system configuration and benchmark testing information.
9 Apache Spark™ results for the 4xlarge instance size. xlarge: Up to 27 percent performance improvement as measured by HiBench Spark Throughput K-means benchmark
 testing in August 2022 of a 3rd Gen Intel® Xeon® Platinum 8375C processor and an AMD EPYC™ 7R13 processor. Intel Xeon Platinum 8375C processor (JDK® 11): m6i.
 xlarge = 101,090.0000. AMD EPYC 7R13 processor (JDK 11): m6a.xlarge = 79,072.00. 4xlarge: Up to 12 percent performance improvement as measured by HiBench Spark
 Throughput K-means benchmark testing in August 2022 of a 3rd Gen Intel Xeon Platinum 8375C processor and an AMD EPYC 7R13 processor. Intel Xeon Platinum
 8375C processor (JDK 11): m6i.4xlarge = 154,470.0000. AMD EPYC 7R13 processor (JDK 11): m6a.4xlarge = 137,211.00. 16xlarge: Up to 3 percent performance
 improvement as measured by HiBench Spark Throughput K-means benchmark testing in August 2022 of a 3rd Gen Intel Xeon Platinum 8375C processor and an
 AMD EPYC 7R13 processor. Intel Xeon Platinum 8375C processor (JDK 11): m6i.16xlarge = 148,546.0000. AMD EPYC 7R13 processor (JDK 11): m6a.16xlarge
 = 143,000.00. See Table 2 for full system configuration and benchmark testing information.
10 MindMajix. “Top 30 AWS Services List in 2022.” https://mindmajix.com/top-aws-services.
11 Nakivo. “The Definitive Guide to AWS EC2 Instance Types.” www.nakivo.com/blog/the-definitive-guide-to-aws-ec2-instance-types/.
12 Apache Cassandra. “Cassandra Documentation: Support for Java 11.” https://cassandra.apache.org/doc/latest/cassandra/new/java11.html.
13 GitHub. “test/cql-pytest/run-cassandra doesn't work with Java 17 #10946.” July 2022. https://github.com/scylladb/scylladb/issues/10946. And: GitHub.
 “JDK11: HiBench to support JDK11, >=Spark2.4 and >=scala2.12.4 #567.” February 2019. https://github.com/Intel-bigdata/HiBench/issues/567.
14 ZDNet. “Elastic, search company for Uber and Tinder, nearly doubles in IPO.” October 2018. www.zdnet.com/article/
 elastic-search-company-for-uber-and-tinder-nearly-doubles-in-ipo/.
15 Sematext Group. “Elasticsearch Tutorial: A complete guide to getting started with the basic concepts: what it is, how it works, and what it’s used for.” https://sematext.com/
 guides/elasticsearch/#what-is-elasticsearch-used-for-applications-examples.
16 Ubuntu. “What is Cassandra and why are big tech companies using it?” May 2020. https://ubuntu.com/blog/apache-cassandra-top-benefits.

https://mindmajix.com/top-aws-services
http://www.nakivo.com/blog/the-definitive-guide-to-aws-ec2-instance-types/
https://cassandra.apache.org/doc/latest/cassandra/new/java11.html
https://github.com/scylladb/scylladb/issues/10946
https://github.com/Intel-bigdata/HiBench/issues/567
http://www.zdnet.com/article/elastic-search-company-for-uber-and-tinder-nearly-doubles-in-ipo/
http://www.zdnet.com/article/elastic-search-company-for-uber-and-tinder-nearly-doubles-in-ipo/
https://sematext.com/guides/elasticsearch/#what-is-elasticsearch-used-for-applications-examples
https://sematext.com/guides/elasticsearch/#what-is-elasticsearch-used-for-applications-examples
https://ubuntu.com/blog/apache-cassandra-top-benefits

Technical Research Study | Java-Based Benchmarking Shines a Light on How Underlying Architecture Impacts Cloud Performance

9

17 Instagram Engineering. “Open-sourcing a 10x reduction in Apache Cassandra tail latency.” March 2018. https://instagram-engineering.com/
 open-sourcing-a-10x-reduction-in-apache-cassandra-tail-latency-d64f86b43589.
18 Up to 42 percent performance improvement as measured by Cassandra Write-Op rate benchmark testing in June 2022 of a 3rd Gen Intel® Xeon® Platinum
 8375C processor and an AMD EPYC™ 7R13 processor. Intel Xeon Platinum 8375C processor (JDK® 11): m6i.xlarge = 21,900.0000. Amazon Web Services®
 (AWS®) Graviton2 (JDK 11): m6g.xlarge = 15,377.0000. Up to 50 percent performance improvement as measured by Cassandra Write Latency Median benchmark
 testing in June 2022 of a 3rd Gen Intel Xeon Platinum 8375C processor and an AMD EPYC 7R13 processor. Intel Xeon Platinum 8375C processor (JDK 11):
 m6i.16xlarge = 0.6000. AMD EPYC 7R13 (JDK 11): m6a.16xlarge = 1.2000. Up to 100 percent performance improvement as measured by Cassandra Write Latency
 Median benchmark testing in June 2022 of a 3rd Gen Intel Xeon Platinum 8375C processor and an AMD EPYC 7R13 processor. Intel Xeon Platinum 8375C
 processor (JDK 11): m6i.4xlarge = 0.6000. AMD EPYC 7R13 (JDK 11): m6a.4xlarge = 1.2000. See Table 2 for full system configuration and benchmark testing information.
19 Data Centre Dynamics. “Cray announces Urika-GX, a supercomputing platform for big data.” May 2016. www.datacenterdynamics.com/en/news/
 cray-announces-urika-gx-a-supercomputing-platform-for-big-data/.
20 Up to 49 percent performance improvement as measured by HiBench Spark Throughput k-means benchmark testing in June 2022 of a 3rd Gen Intel® Xeon®
 Platinum 8375C processor and an Amazon Web Services® (AWS®) Graviton2 processor. Intel Xeon Platinum 8375C processor (JDK® 11): m6i.4xlarge = 154,470.0000.
 AWS Graviton2 processor (JDK 11): m6g.4xlarge = 103,280.0000. Up to 27 percent performance improvement as measured by HiBench Spark Throughput k-means
 benchmark testing in June 2022 of a 3rd Gen Intel Xeon Platinum 8375C processor and AWS Graviton2 processor. Intel Xeon Platinum 8375C processor (JDK 11):
 m6i.xlarge = 101,090.0000. AMD EPYC™ 7R13 (JDK 11): m6a.xlarge = 79,072.0000. See Table 2 for full system configuration and benchmark testing information.
21 Apache Cassandra® results for the 16xlarge instance size. Up to 6 percent performance regression as measured by Cassandra Read-Op Rate benchmark testing in June
 2022 of a 3rd Gen Intel® Xeon® Platinum 8375C processor. JDK® 8: m6i.16xlarge = 107,294.0000. JDK 11: m6i.16xlarge = 101,108.0000. See Table 2 for full system
 configuration and benchmark testing information.

The analysis in this document was done by Prowess Consulting and commissioned by Intel.
Results have been simulated and are provided for informational purposes only. Any difference in system hardware or software design

or configuration may affect actual performance.
Prowess and the Prowess logo are trademarks of Prowess Consulting, LLC.

Copyright © 2022 Prowess Consulting, LLC. All rights reserved.
Other trademarks are the property of their respective owners.

https://instagram-engineering.com/open-sourcing-a-10x-reduction-in-apache-cassandra-tail-latency-d64f86b43589?gi=c59a9a2c0cd9
https://instagram-engineering.com/open-sourcing-a-10x-reduction-in-apache-cassandra-tail-latency-d64f86b43589?gi=c59a9a2c0cd9
http://www.datacenterdynamics.com/en/news/cray-announces-urika-gx-a-supercomputing-platform-for-big-data/
http://www.datacenterdynamics.com/en/news/cray-announces-urika-gx-a-supercomputing-platform-for-big-data/

