
Behind the Report:
Accelerate Big Data and Database Workloads
in Healthcare

Dell™ PowerEdge™ R730 Dell™ PowerEdge™ R7515

Hardware

Processor 2 x Intel® Xeon® processor E5-2683 1 x AMD EPYC™ 7543 processor

Number of CPUs 2 1

Cores 16 32

Cores/threads total 32/64 32/64

Frequency (base/SCT/MCT) 2,100 MHz 2,800 MHz

Storage controller 01 No operating system (OS) boot-optimized
storage controller (BOSS)

Dell™ BOSS-S1

Disk Not applicable (N/A) 223.57 GB

Number of disks N/A 2

Storage controller 02 N/A Dell™ PowerEdge™ RAID Controller (PERC)
H730P

Disk 1,787.88 GB 1,787.88 GB

Number of disks 4 4

Installed memory 128 GB 128 GB

Memory DIMM Error correcting code (ECC) DDR4 Error correcting code (ECC) DDR4

Memory speed 2,133 MT/s 3,200 MT/s

Number of memory DIMMs 8 8

BIOS version 2.13.0 2.7.3

OS performance profile Performance Performance

This document provides the system-configuration details and step-by-step procedures that Prowess used to perform benchmark

testing on two Dell Technologies™ platforms:

• Dell™ PowerEdge™ R730

• Dell™ PowerEdge™ R7515

For the full analysis, read the report “Accelerate Big Data and Database Workloads in Healthcare.”

Testing was concluded on August 5, 2022.

Server Configurations

Methodology

https://www.prowesscorp.com/project/dell-amd-servers-build-secure-performant-healthcare-it-infrastructure/

>> 2

Methodology | Behind the Report: Accelerate Big Data and Database Workloads in Healthcare

Testing Procedures
Baseline
Baseline using Sysbench:

• CPU Baseline:

 sysbench cpu --cpu-max-prime=10000 run

• Storage Baseline:

	 	 sysbench	fileio	--threads=16	--file-total-size=5G	--file-test-mode=rndrw	prepare
	 	 sysbench	fileio	--threads=16	--file-total-size=5G	--file-test-mode=rndrw	run
	 	 sysbench	fileio	--file-test-mode=rndrw	cleanup

HammerDB with TPC-H

With HammerDB, a TPC-H–like workload can be run to determine the server performance with Microsoft® SQL Server®.

1. Set up the server under test (SUT) with Red Hat® Enterprise Linux®.

 a. System 1 (Dell PowerEdge R7515):

 i. Configure RAID

 1. Enter Dell™ Lifecycle Controller.

 2. Select Hardware Configuration.

 3. Under Storage Configuration Wizards, click RAID Configuration.

 4. Select the controller, and then click Next.

 5. Select the RAID level, and then click Next.

 6. Select the physical drives, and then click Next.

 7. Select the virtual disk parameters, and then click Next.

 8. Select Finish to apply the RAID configuration.

Software

OS Red Hat® Enterprise Linux® 8.6

OS kernel 4.18.0-372.13.1.el8_6.x86_64

Database Microsoft® SQL Server® 2019—15.0.4236.7

Benchmarking tools

Database performance HammerDB TPROC-H benchmark

Big data (artificial intelligence [AI])
performance

Spark-Bench KMeans workload

>> 3

Methodology | Behind the Report: Accelerate Big Data and Database Workloads in Healthcare

 ii. Install Red Hat Enterprise Linux 8.6:

 1. PXE boot and select Red Hat Enterprise Linux 8.6.

 iii. Change to the correct time zone.

 iv. Change Software Selection to Server and add Hardware Monitoring Utilities.

 v. Create a root password.

 vi. Create an additional user and make them an admin.

 vii. Manually set partitions on the RAID 1 volume created in Dell Lifecycle Controller:

 1. /home = 130.92 GB

 2. /rhel-root = 75 GB

 3. /boot/efi = 600 MiB

 4. /boot = 1,024 MiB

 5. /swap = 16 GB

 viii. Enable wired network connection.

 b. System 2 (Dell PowerEdge R730):

 i. Configure RAID:

 1. Software RAID was used and configured in Red Hat Enterprise Linux.

 ii. Install Red Hat Enterprise Linux.

 1. PXE boot and select Red Hat Enterprise Linux 8.6.

 iii. Change to the correct time zone.

 iv. Change Software Selection to Server and add Hardware Monitoring Utilities.

 v. Create a root password.

 vi. Create an additional user and make them an admin.

 vii. Manually set partitions; for this step, all drives (4) were selected:

 1. /home = 100.09 GB with RAID5

 2. /mssql/data = 3.5 TB with RAID5

 3. /mssql/logs = 1.5 TB with RAID10

 4. /rhel-root = 1,024 MB with RAID1

 5. /boot/efi = 600 MiB with RAID1

 6. /boot = 70 MiB with RAID5

 7. /swap = 16 GB with RAID5

 viii. Enable wired network connection.

>> 4

Methodology | Behind the Report: Accelerate Big Data and Database Workloads in Healthcare

2. Install and optimize Microsoft SQL Server.

 a. Run the following commands to install prerequisites:

 sudo	yum	install	python2	compat-openssl10	
	 	 sudo	alternatives	--config	python	

 b. Run the following commands to enable TuneD and install the SQL Server TuneD profile:

	 	 systemctl	enable	tuned
	 	 dnf	install	tuned-profiles-mssql

 c. The tuned.conf file in /usr/lib/tuned/mssql has the following configuration:

 #
	 	 #	tuned	configuration
 #

 [main]
	 	 summary=Optimize	for	Microsoft	SQL	Server
	 	 include=throughput-performance

 [cpu]
	 	 force_latency=5

	 	 [vm]
	 	 #	For	multi-instance	SQL	deployments	use	'madvise'	instead	of	'always'
	 	 transparent_hugepages=always

	 	 [sysctl]
	 	 vm.swappiness=1
	 	 vm.dirty_background_ratio=3
	 	 vm.dirty_ratio=80
	 	 vm.dirty_expire_centisecs=500
	 	 vm.dirty_writeback_centisecs=100
	 	 vm.max_map_count=1600000
	 	 net.core.rmem_default=262144
	 	 net.core.rmem_max=4194304
	 	 net.core.wmem_default=262144
	 	 net.core.wmem_max=1048576
	 	 kernel.numa_balancing=0

	 	 [scheduler]
	 	 sched_latency_ns=60000000
	 	 sched_migration_cost_ns=500000
	 	 sched_min_granularity_ns=15000000
	 	 sched_wakeup_granularity_ns=2000000

 d. Run the following command to set the SQL Server repository:

 sudo	curl	-o	/etc/yum.repos.d/mssql-server.repo	
	 	 https://packages.microsoft.com/config/rhel/8/mssql-server-2019.repo

 e. Run the following command to install SQL Server:

 sudo	dnf	install	-y	mssql-server	

>> 5

Methodology | Behind the Report: Accelerate Big Data and Database Workloads in Healthcare

 f. Run the following command to configure SQL Server:

	 	 /opt/mssql/bin/mssql-conf	setup	

 g. Select 1 for evaluation.

 h. Enter Yes to accept the license terms.

 i. Enter a SQL Server Admin Password.

 j. Run the following command to verify that SQL Server is running:

	 	 systemctl	status	mssql-server

 k. For testing purposes only, disable SELINUX by modifying the config file in /etc/selinux/ to set SELINUX to “permissive:”

 vi	/etc/selinux/config	
	 	 SELINUX=permissive

 l. Install the SQL Server tools by using the following commands:

 curl	-o	/etc/yum.repos.d/msprod.repo	

	 	 https://packages.microsoft.com/config/rhel/8/prod.repo

	 	 dnf	install	-y	mssql-tools	unixODBC-devel

 m. Configure .bash_profile and .bashrc to source the tools and SQL Server install paths by using the following commands:

 	 echo	'export	PATH="$PATH:/opt/mssql-tools/bin"'	>>	~/.bash_profile	
	 	 echo	'export	PATH="$PATH:/opt/mssql-tools/bin"'	>>	~/.bashrc	
	 	 echo	'export	PATH="$PATH:/opt/mssql/bin"'	>>	~/.bash_profile	
	 	 echo	'export	PATH="$PATH:/opt/mssql/bin"'	>>	~/.bashrc	
	 	 source	~/.bashrc	

 n. Test connectivity to SQL Server by running the following command:

 sqlcmd	-s	localhost	-U	SA	-P	<sa password>

 o. Run the following SQL command to verify the version:

 Select	@@version												 	 	 	 	 	 	 	 			

	 	 go

 p. Enable trace flag 3979 to support SQL Server and the Forced Unit Access (FUA) input/output (I/O) subsystem by using

 the following commands:

i. Enter the following command to enable traceflag 3979:

 mssql-conf	traceflag	3979	on

ii. Enter the following command to set control.writethrough in the mssql-conf configuration option to 1:

 mssql-conf	set	control.writethrough	1

iii. Enter the following command to set control.alternatewritethrough in the mssql-conf configuration

 option to 0:

 mssql-conf	set	control.alternatewritethrough	0	

>> 6

Methodology | Behind the Report: Accelerate Big Data and Database Workloads in Healthcare

 q. Run the following commands to complete setup of SQL Server:

 	 mssql-conf	set	telemetry.customerfeedback	false	
	 	 sysctl	-w	kernel.numa_balancing=0	
	 	 sysctl	-w	vm.max_map_count=262144	
	 	 mssql-conf	set	network.tlsprotocols	1.2

 r. Set SQL Server memory to 90 percent of available memory by using the following command:

	 	 mssql-conf	set	memory.memorylimitmb	230400	

 s. Run the following command to create the SQL Server directory:

	 	 mkdir	-p	/mssql/data	/mssql/log/log	/mssql/log/tempdb

 t. Run the following command to change ownership of the newly created directories:

 sudo	chown	mssql:mssql	/mssql/data
	 	 sudo	chown	mssql:mssql	/mssql/log

 u. Run the following command to enable execution on the directories:

 sudo	chmod	777	/mssql/data

	 	 sudo	chmod	777	/mssql/log

 v. Update the SQL Server configuration data and log file locations by using the following commands:

 mssql-conf	set	filelocation.defaultdatadir	/mssql/data/	
	 	 mssql-conf	set	filelocation.defaultlogdir	/mssql/log/log

 w. Restart the SQL Server service by using the following command:

	 	 systemctl	restart	mssql-server.service	

 x. Launch the SQL Server management console from a client system.

 y. Connect to the Linux SQL Server instance.

 z. Run the following commands to modify the location of TempDB:

 ALTER	DATABASE	tempdb	MODIFY	FILE	

 (NAME	=	tempdev,	FILENAME	=	'/mssql/log/tempdb/tempdb01.mdf',	SIZE	=	1024,	

	 	 FILEGROWTH	=	8192MB)

	 	 GO	

	 	 ALTER	DATABASE	tempdb	MODIFY	FILE	

 (NAME	=	templog,	FILENAME	=	'/mssql/tempdb/templog.ldf',	SIZE	=	1024,	

	 	 FILEGROWTH	=	8192MB)	

	 	 GO	

	 	 ALTER	DATABASE	tempdb	REMOVE	FILE	tempdev2

	 	 GO	

	 	 ALTER	DATABASE	tempdb	REMOVE	FILE	tempdev3

	 	 GO	

	 	 ALTER	DATABASE	tempdb	REMOVE	FILE	tempdev4

	 	 GO	

	 	 ALTER	DATABASE	tempdb	REMOVE	FILE	tempdev5

	 	 GO	

>> 7

Methodology | Behind the Report: Accelerate Big Data and Database Workloads in Healthcare

	 	 ALTER	DATABASE	tempdb	REMOVE	FILE	tempdev6

	 	 GO	

	 	 ALTER	DATABASE	tempdb	REMOVE	FILE	tempdev7

	 	 GO	

	 	 ALTER	DATABASE	tempdb	REMOVE	FILE	tempdev8

	 	 GO

	 	 ALTER	DATABASE	tempdb	

	 	 ADD	FILE	(NAME	=	tempdev2,	FILENAME	=	'/mssql/tempdb/tempdb02.ndf',	SIZE	=	1024,	

	 	 FILEGROWTH	=	8192MB)	

	 	 ALTER	DATABASE	tempdb	

 ADD	FILE	(NAME	=	tempdev3,	FILENAME	=	'/mssql/tempdb/tempdb03.ndf',	SIZE	=	1024,	

	 	 FILEGROWTH	=	8192MB)	

	 	 ALTER	DATABASE	tempdb	

 ADD	FILE	(NAME	=	tempdev4,	FILENAME	=	'/mssql/tempdb/tempdb04.ndf',	SIZE	=	1024,	

	 	 FILEGROWTH	=	8192MB)	

	 	 ALTER	DATABASE	tempdb	

 	 ADD	FILE	(NAME	=	tempdev5,	FILENAME	=	'/mssql/tempdb/tempdb05.ndf',	SIZE	=	1024,	

	 	 FILEGROWTH	=	8192MB)	

	 	 ALTER	DATABASE	tempdb	

 ADD	FILE	(NAME	=	tempdev6,	FILENAME	=	'/mssql/tempdb/tempdb06.ndf',	SIZE	=	1024,	

	 	 FILEGROWTH	=	8192MB)	

	 	 ALTER	DATABASE	tempdb	

 ADD	FILE	(NAME	=	tempdev7,	FILENAME	=	'/mssql/tempdb/tempdb07.ndf',	SIZE	=	1024,	

	 	 FILEGROWTH	=	8192MB)	

	 	 ALTER	DATABASE	tempdb	

 ADD	FILE	(NAME	=	tempdev8,	FILENAME	=	'/mssql/tempdb/tempdb08.ndf',	SIZE	=	1024,	

	 	 FILEGROWTH	=	8192MB)	

 aa. Enter the following command to set Max Degree of Parallelism to 0:

 EXEC	sp_configure	'show	advanced	options',	1;		

	 	 GO		

	 	 RECONFIGURE	WITH	OVERRIDE;		

	 	 GO		

	 	 EXEC	sp_configure	'max	degree	of	parallelism',	0;		

	 	 GO		

	 	 RECONFIGURE	WITH	OVERRIDE;		

3. Download HammerDB to the SUT:

	 	 curl	-OL	https://github.com/TPC-Council/HammerDB/releases/download/v4.4/HammerDB-4.4-

	 	 Linux.tar.gz

4. Deploy the HammerDB TPROC-H test database.

	 	 tar	-xvf	HammerDB-4.4-Linux.tar.gz

5. Modify the “mssqls_pass” variable in the mssqlserver.xml file to use the correct password:

 vi	config/mssqlserver.xml

>> 8

Methodology | Behind the Report: Accelerate Big Data and Database Workloads in Healthcare

6. Deploy the HammerDB TPROC-H test database:

 a. Enter the following command to start HammerDBcli:

	 	 ./hammerdbcli

 b. Enter the following command to set the database type:

	 	 dbset	db	mssqls

 c. Enter the following command to verify the database type:

	 	 print	db

 d. Enter the following command to set the benchmark workload type to TPROC-H:

 dbset	bm	TPROC-H

 e. Enter the following command to set Scale Factory to 300:

	 	 diset	tpch	mssqls_scale_fact	300

 f. Enter the following command to set the number of virtual users to build schema to 40:

 diset	tpch	mssqls_num_tpch_threads	40

 g. Enter the following command to set Maxdop to 0:

 diset	tpch	mssqls_maxdop	0

 h. Enter the following command to set Clustered Columnstore to true:

 diset	tpch	mssqls_colstore	true

 i. Enter the following command to build the schema:

 buildschema

 j. Enter the following command to verify the status of the build:

 vustatus

 k. Enter the following command to destroy the build virtual users:

 vudestroy

7. Run through experimentation to determine Scale Factor and Streams for HammerDB testing.

8. Start HammerDBcli by running the following command where HammerDB is installed:

	 	 Hammerdbcli

9. Configure HammerDB to use the following settings by running the commands below:

 a. Set the database test to use SQL Server:

 dbset	dbmssqls

>> 9

Methodology | Behind the Report: Accelerate Big Data and Database Workloads in Healthcare

 b. Set the benchmark type to use TPROC-H:

 dbset	bm	TPROC-H

 c. Set the scale factor (1, 100, and 300):

 diset	tpch	mssqls_scale_fact	1

 d. Set the number of threads to 40:

 diset	tpch	mssqls_num_tpch_threads	40

 e. Set the Maxdrop to 0:

 diset	tpch	mssqls_maxdop	0

 f. Set Clustered Columnstore to true:

 diset	tpch	mssqls_colstore	true

 g. HammerDB is now configured and ready to run.

10. Configure the TCL script that HammerDB will run. Create a new file called mssqltest.tcl with the following configuration, and

save it where you have HammerDB installed:

	 	 #!/bin/tclsh
	 	 proc	runtimer	{	seconds	}	{
	 	 set	x	0
	 	 set	timerstop	0
	 	 while	{!$timerstop}	{
 incr x
	 	 after	1000
	 	 if	{	![expr	{$x	%	60}]	}	{
	 	 set	y	[expr	$x	/	60]
	 	 puts	"Timer:	$y	minutes	elapsed"
	 	 }
	 	 update
	 	 if	{	[vucomplete]	||	$x	eq	$seconds	}	{	set	timerstop	1	}
	 	 }
	 	 return
	 	 }
	 	 puts	"SETTING	CONFIGURATION"
	 	 dbset	db	mssqls
	 	 dbset	bm	TPROC-H
	 	 diset	tpch	mssqls_scale_fact	1
	 	 vuset	iterations	1
	 	 vuset	showoutput	1
	 	 vuset	logtotemp	1
	 	 vuset	timestamps	1
	 	 vuset	unique	1
	 	 loadscript
	 	 foreach	z	{	1	5	10	20	50		}	{
	 	 puts	"$z	iteration"
	 	 vuset	vu	$z
	 	 vucreate
	 	 vurun

>> 10

Methodology | Behind the Report: Accelerate Big Data and Database Workloads in Healthcare

	 	 runtimer	1800
	 	 vudestroy
	 	 after	1920
	 	 }
	 	 puts	"TESTING	COMPLETE"

11. Download and install atop to capture system performance information by using the following commands:

 	 wget	https://www.atoptool.nl/download/atop-2.6.0-1.el8.x86_64.rpm
	 	 chmod	+x	atop-2.6.0-1.el8.x86_64.rpm	
	 	 rpm	-ivh	atop-2.6.0-1.el8.x86_64.rpm	
	 	 service	atop	start	

12. Capture atop data by using the following command:

	 	 atop	-r	-b	<beginning time>	-e	<ending time>	>	/tmp/pass#.txt
 example:	atop	-r	-b	12:06	-e	12:38	>	/tmp/atop/pass3.txt	

13. Capture DSTAT data by using the following command:

	 	 dstat	-trdlD	total,sdb,sdc	60	--output	/tmp/pass#.csv

14. Run the benchmark:

 a. Open three separate command windows.

 b. Run the following command in the first command window:

	 	 atop

 c. Run the following command in the second command window (making sure to update output file name to

 match current pass):

	 	 dstat	-trdlD	total,sdb,sdc	60	--output	/tmp/dstat_pass#.csv

d. Run the following commands in the third command window:

	 	 cd	/Hammerdb
	 	 ./hammerdbcli
	 	 source	mssqltest.tcl

 e. When the test has completed, capture a screenshot of the atop window.

 f. Stop the DSTAT command by using Ctrl+C and make note of the start and stop times.

 g. Use the times from DSTAT and run the following command:

	 	 atop	-r	-b	beginning time -e ending time	>	/tmp/pass#.txt

 h. Highlight and capture the output results of the Spark-Bench pass, and then save them to a .txt file.

 i. Repeat this process three more times, rebooting between each pass, and keeping the last three pass scores.

>> 11

Methodology | Behind the Report: Accelerate Big Data and Database Workloads in Healthcare

Spark-Bench

1. Create a RAID configuration:

 a. System 1 (Dell PowerEdge R7515):

 i. Configure RAID:

 1. Enter Dell Lifecycle Controller.

 2. Select Hardware Configuration.

 3. Under Storage Configuration Wizards, click RAID Configuration.

 4. Select the controller, and then click Next.

 5. Select the RAID level, and then click Next.

 6. Select the physical drives, and then click Next.

 7. Select the virtual disk parameters, and then click Next.

 8. Select Finish to apply the RAID configuration.

 b. System 2 (Dell PowerEdge R730):

 i. Software RAID was used and configured in Red Hat Enterprise Linux.

2. Install Red Hat Enterprise Linux.

 a. System 1 (Dell PowerEdge R7515):

 i. PXE boot and select Red Hat Enterprise Linux 8.6.

 ii. Change to the correct time zone.

 iii. Change Software Selection to Server and add Hardware Monitoring Utilities.

 iv. Create a root password.

 v. Create an additional user and make them an admin.

 vi. Manually set partitions on the RAID 1 volume created in Dell Lifecycle Controller:

 1. /home = 130.92 GB

 2. /rhel-root = 75 GB

 3. /boot/efi = 600 MiB

 4. /boot = 1,024 MiB

 5. /swap = 16 GB

 vii. Enable wired network connection.

>> 12

Methodology | Behind the Report: Accelerate Big Data and Database Workloads in Healthcare

 b. System 2 (Dell PowerEdge R730):

 i. PXE boot and select Red Hat Enterprise Linux 8.6:

 ii. Change to the correct time zone.

 iii. Change Software Selection to Server and add Hardware Monitoring Utilities.

 iv. Create a root password.

 v. Create an additional user and make them an admin.

 vi. Manually set partitions; for this process, all drives (4) were selected.

 1. /home = 500.09 GB with RAID5

 2. /spark = 3.8 TB with RAID5

 3. /rhel-root = 2 GB with RAID1

 4. /boot/efi = 600 MiB with RAID1

 5. /boot = 70 MiB with RAID5

 6. /swap = 16 GB with RAID5

 vii. Enable wired network connection.

3. Stop and disable the firewall.

	 	 systemctl	stop	firewalld
	 	 systemctl	disable	firewalld

4. Disable SELINUX.

	 	 vi	/etc/selinux/config

	 	 SELINUX=permissive

5. Download and install Java JDK.

	 	 yum	install	-y	java-1.8.0-openjdk

6. Set JAVA_HOME:

 export	JAVA_HOME=~/jres/java-8

7. Verify JAVA_HOME is set correctly:

	 	 printenv	|	grep	JAVA_HOME

8. Download Spark:

	 	 wget	https://archive.apache.org/dist/spark/spark-2.4.8/spark-2.4.8-bin-hadoop2.7.tgz

9. Unpack the tarball:

	 	 tar	-xvf	spark-2.4.8-bin-hadoop2.7.tgz

>> 13

Methodology | Behind the Report: Accelerate Big Data and Database Workloads in Healthcare

10. Create a systemd unit file for the master service:

	 	 vi	/etc/systemd/system/spark-master.service

	 	 	 [Unit]
	 	 	 Description=Apache	Spark	Master
	 	 	 After=netowrk.target

	 	 	 [Service]
	 	 	 Type=forking
	 	 	 User=root
	 	 	 Group=root
	 	 	 ExecStart=/opt/spark/sbin/start-master.sh
	 	 	 ExecStop=/opt/spark/sbin/stop-master.sh

	 	 	 [Install]
	 	 	 WantedBy=multi-user.target

11. Create a systemd unit file for the slave service:

 vi	/etc/systemd/system/spark-slave.service

	 	 	 [Unit]
	 	 	 Description=Apache	Spark	Slave
	 	 	 After=netowrk.target

	 	 	 [Service]
	 	 	 Type=forking
	 	 	 User=root
	 	 	 Group=root
	 	 	 ExecStart=/opt/spark/sbin/start-slave.sh	spark://127.0.0.1:7077
	 	 	 ExecStop=/opt/spark/sbin/stop-slave.sh

	 	 	 [Install]

	 	 	 WantedBy=multi-user.target

12. Ask systemd to read the new service files:

	 	 systemctl	daemon-reload

13. Start the services:

 	 	 systemctl	start	spark-master.service

	 	 systemctl	start	spark-slave.service

14. Verify the Spark services are running:

 systemctl	status	spark-master.service	
	 	 systemctl	status	spark-slave.service

15. Download and extract Spark-Bench:

 wget	https://github.com/CODAIT/spark-bench/releases/download/v99/spark-	

	 	 bench_2.3.0_0.4.0-RELEASE_99.tgz

>> 14

Methodology | Behind the Report: Accelerate Big Data and Database Workloads in Healthcare

16. Unpack the tarball:

	 	 tar	-xvzf	spark-bench_2.3.0_0.4.0-RELEASE_99.tgz

17. Create the kmeansworkloadgenerate.conf file with the following command

	 	 vi	kmeansworkloadgenerate.conf

18. Enter the following information into the file, and then save

	 	 	 spark-bench	=	{
	 	 	 	 spark-home	=	"/opt/spark/"
	 	 	 	 spark-submit-config	=	[{
	 	 	 	 	 spark-args	=	{
	 	 	 	 	 master	=	"spark://127.0.0.1:7077"
 	 	 	 	 }

 spark-bench-jar	=	"/spark-bench/spark-bench_2.3.0_0.4.0-

	 	 	 	 RELEASE/lib/spark-bench-2.3.0_0.4.0-RELEASE.jar"workload-suites	=	[
	 	 	 	 {
	 	 	 	 	 descr	=	"KMean	data	generator"
	 	 	 	 benchmark-output	=	"console"
	 	 	 	 workloads	=	[
	 	 	 	 {
	 	 	 	 	 name	=	"data-generation-kmeans"
	 	 	 	 	 rows	=	100000
	 	 	 	 	 cols	=	99
	 	 	 	 	 output	=	"/opt/spark/temp/kmeans-data.csv"
	 	 	 	 	 k	=	10
	 	 	 	 	 scaling	=	1.6
	 	 	 	 	 partitions	=	10
	 	 	 	 	 }
]
	 	 	 }
]
	 }]

		}

19. Set the environment for Spark-Bench by generating workload files for Spark-Bench with 100,000 rows, and then recreate the

environment with 50,000,000 rows:

	 	 /bin/spark-bench.sh	kmeansworkloadgenerate.conf

20. Create the workload script:

 	 vi	kmeansworkload.conf
	 	 	 spark-bench	=			{
	 	 	 	 spark-home	=	"/spark/spark/"
	 	 	 	 spark-submit-config	=	[
	 	 	 	 	 {
	 	 	 	 	 spark-args	=	{
	 	 	 	 	 	 master	=	"spark://127.0.0.1:7077"
	 	 	 	 	 	 num-executors	=	31
	 	 	 	 	 	 	 executor-memory	=	32g

>> 15

Methodology | Behind the Report: Accelerate Big Data and Database Workloads in Healthcare

	 	 	 	 	 	 }
	 	 	 	 	 	 workload-suites	=	[
	 	 	 	 	 	 	 {
	 	 	 	 	 	 	 descr	=	"KMean	data	generator"
	 	 	 	 	 	 	 benchmark-output	=	"console"
	 	 	 	 	 	 	 workloads	=	[
	 	 	 	 	 	 	 	 {
	 	 	 	 	 	 	 	 name	=	"kmeans"
	 	 	 	 	 	 	 	 input	=	"/spark/spark/temp/kmeans-data.csv"
	 	 	 	 	 	 	 	 rows	=	100000
	 	 	 	 	 	 	 	 cols	=	24
	 	 	 	 	 	 	 	 scaling	=	1.6
	 	 	 	 	 	 	 	 partitions	=	10
	 	 	 	 	 	 	 	 output	=	/spark/benchmark/results.txt
	 	 	 	 	 	 	 	 k	=	10
	 	 	 	 	 	 	 	 maxiterations	=	5
	 	 	 	 	 	 	 	 }
]
	 	 	 	 	 	 }
]
	 	 	 	 }
]
	 	 	 	 }

21. Modify "spark-bench-env.sh" by setting the following:

	 	 vi	/spark-bench-env.sh
	 	 	 export	SPARK_HOME=<spark location>
	 	 	 export	SPARK_MASTER_HOST=<IP address of the Master>

22. Download and install atop to capture system performance information by using the following commands:

	 	 wget	https://www.atoptool.nl/download/atop-2.6.0-1.el8.x86_64.rpm
	 	 chmod	+x	atop-2.6.0-1.el8.x86_64.rpm	
	 	 rpm	-ivh	atop-2.6.0-1.el8.x86_64.rpm	
	 	 service	atop	start

23. Capture atop data by using the following command:

	 	 atop	-r	-b	<beginning time>	-e	<ending time>	>	/tmp/pass#.txt	
	 	 example:	atop	-r	-b	12:06	-e	12:38	>	/tmp/atop/pass3.txt

24. Install DSTAT:

	 	 sudo	yum	-y	install	dstat

25. Capture DSTAT data by using the following command:

 dstat	-trdlD	total,sdb,sdc	60	--output	/tmp/pass#.csv

26. Run the workload three times, capturing atop and DSTAT results:

 a. Run the benchmark:

 i. Open three separate command windows.

>> 16

Methodology | Behind the Report: Accelerate Big Data and Database Workloads in Healthcare

The analysis in this document was done by Prowess Consulting and commissioned by Dell Technologies.

Prowess and the Prowess logo are trademarks of Prowess Consulting, LLC.

Copyright © 2022 Prowess Consulting, LLC. All rights reserved.

Other trademarks are the property of their respective owners.

 ii. Run the following command in the first command window:

	 	 	 	 atop

 iii. Run the following command in the second command window (making sure to update output file

 name to match current pass):

	 	 	 	 dstat	-trdlD	total,sdb,sdc	60	--output	/tmp/dstat_pass#.csv

 iv. Run the following command in the third command window:

	 	 	 	 /{spark-bench	dir	location}/bin/spark-bench.sh	kmeansworkload.conf

 v. When the test has completed, capture a screenshot of the atop window.

 vi. Stop the DSTAT command by using Ctrl+C and make a note of the start and stop times.

 vii. Use the times from DSTAT and run the following command:

	 	 	 	 atop	-r	-b	beginning time -e ending time	>	/tmp/pass#.txt

 viii. Highlight and capture the output results of the Spark-Bench pass, and then save them to a .txt file.

 ix. Repeat this process three more times, rebooting between each pass, and keeping the last three

 pass scores.

