Large Microsoft[®] SQL Server[®] Database Performance on Dell EMC[™] PowerEdge[™] Servers and VMware vSphere[®]: Methodology Report

This methodology report outlines the configuration and testing steps performed by the Prowess Consulting engineers to test large Microsoft[®] SQL Server[®] database performance. These steps assume the use of a Dell EMC[™] PowerEdge[™] server with an Integrated Dell Remote Access Controller (iDRAC) and an external SAN storage device. For this performance report, we used a Dell EMC PowerStore 7000T configured as a VMware datastore.

Throughout this report, the term "host" refers to the physical server you are configuring.

Configure the Host

- 1. Create volumes greater than 40 TB on the SAN storage device.
- 2. Map the storage volumes to the host.
- 3. Attach the server's operating system media to the server's iDRAC using the virtual console.
- Install VMware ESXi[™] on the server's local hard disk or solid-state drive (SSD). In our tests, we installed VMware ESXi
 6.7 on a Dell EMC PowerEdge R730xd, and we installed VMware ESXi 7 on a Dell EMC PowerEdge R740xd.
- 5. Reboot the server.
- 6. Once ESXi is running, configure a static IP address and enable Secure Shell (SSH).

Configure VMware vCenter® and Create a Virtual Machine (VM)

- 1. Deploy the VMware vCenter VM to the host for the version of VMware vSphere® that you are running.
- 2. Once vCenter[®] is deployed, configure a static IP address for the vCenter VM.
- 3. Connect to vCenter using a web browser and the static IP address.
- 4. Create a new data center and add the ESXi host to the data center.
- 5. Create a new datastore using the attached SAN storage volume.
- 6. Create a VM on the newly created datastore with the following configuration:

VM Configuration Parameter	VMware vSphere [®] 6.7 and Windows Server [®] 2012 R2	vSphere 7 and Windows Server 2019
CPU	16 vCPUs	24 vCPUs
Memory	128 GB	128 GB
OS virtual disk	50 GB using an IDE controller for the older operating system, placed on SAN storage	50 GB, placed on SAN storage
SQL Server data virtual disk	31 TB thick eager zeroed virtual disk, placed on SAN storage	31 TB thick eager zeroed virtual disk, placed on SAN storage
SQL Server log file virtual disk	7.5 TB thick eager zeroed virtual disk, placed on SAN storage	7.5 TB thick eager zeroed virtual disk, placed on SAN storage
Virtual disk storage controller:	Physical sharing: Paravirtual type	Physical sharing: Paravirtual type

7. Install the Windows Server guest operating system on the VM with a 50 GB virtual disk.

Configure Windows Server for Each VM

From the Windows Server Manager:

- 1. Configure a static IP address for the Windows Server VM.
- 2. Disable the Windows Defender firewall.
- 3. Disable Defender Antivirus.
- 4. Disable Internet Explorer (IE) protection.
- 5. Enable remote desktop.
- 6. Install updates.
- 7. Once the updates are installed, pause any further updates.

Configure the VM Disks for Use by SQL Server

- 1. In the VMware console or from a Remote Desktop session to the Windows Server VM, launch a command prompt.
- 2. Enter the following commands to enable quick format:

fsutil behavior query DisableDeleteNotify, verify settings fsutil behavior set disabledeletenotify 1

- 3. Launch the Windows Disk Management tool.
- 4. Right-click the data disk, and then select **Online**.
- 5. Right-click the data disk, and then select Initialize.
- 6. Leave the partition style as GPT, and then select OK.
- 7. Right-click the data disk, and then select New Simple Volume.
- 8. The New simple volume wizard displays. Select Next.
- 9. Assign an appropriate drive letter, and then select Next.

- 10. Format the volume with the following settings:
 - File System: NTFS
 - Allocation Unit Size: 64K
 - Volume Label: Data
- 11. Select Next, and then select Finish.
- 12. Repeat steps 4 through 10 for the log virtual hard disk.
- 13. Launch a command prompt.
- 14. At the command prompt, enter the following commands to disable quick format:

Fsutil behavior query DisableDeleteNotify, verify settings Fsutil behavior set DisableDeleteNotify 0

Install SQL Server 2019 or SQL Server 2012 and HammerDB

- 1. Attach the SQL Server media to the Windows Server VM.
- 2. Run setup.exe.
- 3. Select Installation.
- 4. Select New SQL Server stand-alone installation or add features to an existing installation. Perform a new installation.
- 5. Enter the product key, and then select Next.
- 6. Accept the license agreement, and then select Next.
- 7. Once the installer has finished the Install Rules scan, select Next.
- 8. Select Database Engine Services, and then select Next
- 9. Select **Default instance**, and then select **Next.**
- 10. Accept the default for Service Accounts, and then select Next.
- 11. On the Server Configuration tab:
 - a. Select Mixed Mode.
 - b. Enter a valid system administrator (SA) password in the Enter password and Confirm password fields.
 - c Select Add Current User to add the current user as a SQL Server administrator.
- 12. On the Data Directories tab:
 - a. Enter a data drive path in the User Database Directory field.
 - b. Enter a log drive path in the User database log directory field
- 13. Complete the installation wizard.
- 14. Install SQL Server Management Studio.
- 15. Install HammerDB using the default settings.

Apply SQL Server Best Practices

1. Using SQL Server Management Studio, enable Max Server Memory using the following commands. Note that the value after 'max server memory' will vary depending on your server configuration.

sp_configure 'show advanced options', 1;	
;O	
RECONFIGURE;	
0	
p_configure 'max server memory',125824;	
0	
RECONFIGURE;	
20	

- 2. Configure Lock Pages in Memory:
 - a. In the Local Group Policy Editor console, expand **Computer Configuration**, and then expand **Windows Settings**.
 - b. Expand Security Settings, and then expand Local Policies.
 - c. Select the User Rights Assignment folder. The policies are displayed in the details pane.
 - d. Double-click Lock Pages in Memory.
 - e. On the Local Security Setting tab, select Add User or Group.
 - f. In the **Select Users, Service Accounts, or Groups** dialog box, add an account that has privileges to run sqlservr.exe.
- 3. Sign out, and then sign back in to implement the change.

Configure the ODBC Driver to Connect to the SQL Server Instance

- 1. Select the Windows Start button, and then search for ODBC Data Sources (64-bit).
- 2. On the **User DSN** tab:
 - a. Select Add.
 - b. Select ODBC Driver 17 for SQL Server (Driver 11 for W12R2).
 - c. Select Finish.
- 3. Specify a name for the connection in the **Name** field.
- 4. Add the SQL server connection hostname or IP address in the **Server** field.
- 5. Select Next.
- 6. Leave the authentication settings default if SQL was installed under the current user. Otherwise, specify the correct SQL authentication details.
- 7. Select Next, and then select Finish.
- 8. Select Test Data Source to verify your SQL connection.

Configure HammerDB

- 1. In Windows Explorer, navigate to the HammerDB installation folder. Normally this is located under C:\Program Files.
- 2. In the config directory, edit the mssqlserver.xml file so that it matches the following:

```
<?xml version="1.0" encoding="utf-8"?>
```

```
<mssqlserver>
```

<connection>

<mssqls_server>(local)</mssqls_server>

<mssqls_linux_server>localhost</mssqls_linux_server>

<mssqls_tcp>false</mssqls_tcp>

<mssqls_port>1433</mssqls_port>

<mssqls_azure>false</mssqls_azure>

<mssqls_authentication>sql</mssqls_authentication>

<mssqls_linux_authent>sql</mssqls_linux_authent>

<mssqls_odbc_driver>ODBC Driver 17 for SQL Server</mssqls_odbc_driver>

<mssqls_linux_odbc>ODBC Driver 17 for SQL Server</mssqls_linux_odbc>

<mssqls_uid>sa</mssqls_uid>

<mssqls_pass>Password2020!</mssqls_pass>

```
</connection>
```

<tpcc>

<schema>

<mssqls_count_ware>1</mssqls_count_ware>

<mssqls_num_vu>1</mssqls_num_vu>

<mssqls_dbase>tpcc</mssqls_dbase>

<mssqls_imdb>false</mssqls_imdb>

<mssqls_bucket>1</mssqls_bucket>

<mssqls_durability>SCHEMA_AND_DATA</mssqls_durability>

</schema>

<driver>

<mssqls_total_iterations>1000000</mssqls_total_iterations>

<mssqls_raiseerror>false</mssqls_raiseerror>
<mssqls_keyandthink>false</mssqls_keyandthink>
<mssqls_checkpoint>false</mssqls_checkpoint>
<mssqls_driver>timed</mssqls_driver>
<mssqls_rampup>10</mssqls_rampup>
<mssqls_duration>20</mssqls_duration>
<mssqls_allwarehouse>true</mssqls_allwarehouse>
<mssqls_timeprofile>false</mssqls_async_scale>false</mssqls_async_scale>
<mssqls_async_client>10</mssqls_async_verbose>false</mssqls_async_delay>1000</mssqls_async_delay>

</driver>

```
</tpcc>
```

<tpch>

```
<schema>
```

<mssqls_scale_fact>1</mssqls_scale_fact>

<mssqls_maxdop>2</mssqls_maxdop>

<mssqls_tpch_dbase>tpch</mssqls_tpch_dbase>

<mssqls_num_tpch_threads>1</mssqls_num_tpch_threads>

<mssqls_colstore>false</mssqls_colstore>

</schema>

```
<driver>
```

<mssqls_total_querysets>1</mssqls_total_querysets>

<mssqls_raise_query_error>false</mssqls_raise_query_error>

<mssqls_verbose>false</mssqls_verbose>

<mssqls_refresh_on>false</mssqls_refresh_on>

<mssqls_update_sets>1</mssqls_update_sets>

<mssqls_trickle_refresh>1000</mssqls_trickle_refresh>

<mssqls_refresh_verbose>false</mssqls_refresh_verbose>

</driver>

</tpch>

</mssqlserver>

Configure Windows Performance Monitor

- 1. Open the Computer Management app in the Windows Server VM.
- 2. Expand Performance, and then expand Data Collector Sets.
- 3. Right-click User-defined, select New, and then select Data Collector Set.
- 4. Enter a name in the **Name** field.
- 5. Select Create manually (Advanced), and then select Next.
- 6. Select the Performance counter, Event trace data, and System configuration information check boxes.
- 7. Select Next.
- 8. Select Add.
- 9. Select each of the following items from the Available counters section, and then select Add.

Processor Information(Total)\% Processor Time Memory\Available MBytes PhysicalDisk(_Total)\Avg. Disk sec/Read PhysicalDisk(Total)\Avg. Disk sec/Write PhysicalDisk(_Total)\Disk Reads/sec PhysicalDisk(_Total)\Disk Writes/sec Processor(_Total)\% Processor Time SQLServer:General Statistics\User Connections SQLServer:SQL Statistics\Batch Requests/sec SQLServer:SQL Statistics\SQL Compilations/sec SQLServer:SQL Statistics\SQL Re-Compilations/sec System\Processor Queue Length Process(Total)\% Privileged Time Process(Total)\% User Time Process(_Total)\IO Read Bytes/sec Process(Total)\IO Write Bytes/sec Processor(_Total)\% Privileged Time Processor(_Total)\% User Time Process(_Total)\% Processor Time Average Disk Sec/Transfer Average Disk Queue Length Current Disk Queue Length %Disk Time %Idle Time Buffer Manager: Page Reads/Sec Page Writes/Sec Current Disk Queue Length

Avg. Disk Bytes / Transfer Avg. Disk sec / Transfer Disk Bytes / sec Disk Transfers / sec 10. Select **OK**, and then select **Finish**.

Create the SQL Server Database

Using SQL Server Management Studio, connect to the SQL Server instance and create the 20 TB and 30 TB databases using the following SQL commands:

20 TB TPC-C SQL Server Database Creation Script

```
CREATE DATABASE [tpcc]
 CONTAINMENT = NONE
 ON PRIMARY
( NAME = N'tpcc', FILENAME = N'E:\Program Files\Microsoft SQL Server\MSSQL15.MSSQLSERVER\
MSSQL\Data\tpcc.mdf', SIZE = 10240GB, FILEGROWTH = 10%),
( NAME = N'tpcc1', FILENAME = N'E:\Program Files\Microsoft SQL Server\MSSQL15.MSSQLSERVER\
MSSQL\Data\tpcc1.ndf' , SIZE = 10240GB , FILEGROWTH = 10%)
LOG ON
( NAME = N'tpcc log', FILENAME = N'F:\Program Files\Microsoft SQL Server\MSSQL15.MSSQLSERVER\
MSSQL\Data\tpcc_log.ldf', SIZE = 1073741824KB, FILEGROWTH = 10%),
( NAME = N'tpcc log1', FILENAME = N'F:\Program Files\Microsoft SQL Server\MSSQL15.
MSSQLSERVER\MSSQL\Data\tpcc log1.ldf', SIZE = 1073741824KB, FILEGROWTH = 10%),
( NAME = N'tpcc log2', FILENAME = N'F:\Program Files\Microsoft SQL Server\MSSQL15.
MSSQLSERVER\MSSQL\Data\tpcc_log2.ldf' , SIZE = 1073741824KB , FILEGROWTH = 10%),
( NAME = N'tpcc log3', FILENAME = N'F:\Program Files\Microsoft SQL Server\MSSQL15.
MSSQLSERVER\MSSQL\Data\tpcc_log3.ldf', SIZE = 1073741824KB, FILEGROWTH = 10%),
( NAME = N'tpcc log4', FILENAME = N'F:\Program Files\Microsoft SQL Server\MSSQL15.
MSSQLSERVER\MSSQL\Data\tpcc log4.ldf', SIZE = 1073741824KB, FILEGROWTH = 10%)
GO
ALTER DATABASE [tpcc] SET COMPATIBILITY LEVEL = 150
GO
ALTER DATABASE [tpcc] SET ANSI NULL DEFAULT OFF
GO
ALTER DATABASE [tpcc] SET ANSI NULLS OFF
```

```
ALTER DATABASE [tpcc] SET ANSI_PADDING OFF
GO
ALTER DATABASE [tpcc] SET ANSI_WARNINGS OFF
GO
ALTER DATABASE [tpcc] SET ARITHABORT OFF
GO
ALTER DATABASE [tpcc] SET AUTO CLOSE OFF
GO
ALTER DATABASE [tpcc] SET AUTO SHRINK OFF
GO
ALTER DATABASE [tpcc] SET AUTO_CREATE_STATISTICS ON(INCREMENTAL = OFF)
GO
ALTER DATABASE [tpcc] SET AUTO_UPDATE_STATISTICS ON
GO
ALTER DATABASE [tpcc] SET CURSOR CLOSE ON COMMIT OFF
GO
ALTER DATABASE [tpcc] SET CURSOR_DEFAULT GLOBAL
GO
ALTER DATABASE [tpcc] SET CONCAT_NULL_YIELDS_NULL OFF
GO
ALTER DATABASE [tpcc] SET NUMERIC_ROUNDABORT OFF
GO
ALTER DATABASE [tpcc] SET QUOTED_IDENTIFIER OFF
GO
ALTER DATABASE [tpcc] SET RECURSIVE_TRIGGERS OFF
GO
ALTER DATABASE [tpcc] SET DISABLE BROKER
```

```
GO
```

GO

```
ALTER DATABASE [tpcc] SET AUTO UPDATE STATISTICS ASYNC OFF
GO
ALTER DATABASE [tpcc] SET DATE_CORRELATION_OPTIMIZATION OFF
GO
ALTER DATABASE [tpcc] SET PARAMETERIZATION SIMPLE
GO
ALTER DATABASE [tpcc] SET READ COMMITTED SNAPSHOT OFF
GO
ALTER DATABASE [tpcc] SET READ_WRITE
GO
ALTER DATABASE [tpcc] SET RECOVERY FULL
GO
ALTER DATABASE [tpcc] SET MULTI_USER
GO
ALTER DATABASE [tpcc] SET PAGE_VERIFY CHECKSUM
GO
ALTER DATABASE [tpcc] SET TARGET_RECOVERY_TIME = 60 SECONDS
GO
ALTER DATABASE [tpcc] SET DELAYED DURABILITY = DISABLED
GO
USE [tpcc]
GO
ALTER DATABASE SCOPED CONFIGURATION SET LEGACY_CARDINALITY_ESTIMATION = Off;
GO
ALTER DATABASE SCOPED CONFIGURATION FOR SECONDARY SET LEGACY CARDINALITY ESTIMATION =
Primary;
GO
ALTER DATABASE SCOPED CONFIGURATION SET MAXDOP = 0;
GO
```

```
ALTER DATABASE SCOPED CONFIGURATION FOR SECONDARY SET MAXDOP = PRIMARY;

GO

ALTER DATABASE SCOPED CONFIGURATION SET PARAMETER_SNIFFING = On;

GO

ALTER DATABASE SCOPED CONFIGURATION FOR SECONDARY SET PARAMETER_SNIFFING = Primary;

GO

ALTER DATABASE SCOPED CONFIGURATION SET QUERY_OPTIMIZER_HOTFIXES = Off;

GO

ALTER DATABASE SCOPED CONFIGURATION FOR SECONDARY SET QUERY_OPTIMIZER_HOTFIXES = Primary;

GO

USE [tpcc]

GO

IF NOT EXISTS (SELECT name FROM sys.filegroups WHERE is_default=1 AND name = N'PRIMARY')

ALTER DATABASE [tpcc] MODIFY FILEGROUP [PRIMARY] DEFAULT
```

```
GO
```

30 TB TPC-C SQL Server Database Creation Script

```
CREATE DATABASE [tpcc]
CONTAINMENT = NONE
ON PRIMARY
( NAME = N'tpcc', FILENAME = N'E:\Program Files\Microsoft SQL Server\MSSQL11.MSSQLSERVER\
MSSQL\Data\tpcc.mdf' , SIZE = 10240GB , FILEGROWTH = 10%),
( NAME = N'tpcc1', FILENAME = N'E:\Program Files\Microsoft SQL Server\MSSQL11.MSSQLSERVER\
MSSQL\Data\tpc1.ndf' , SIZE = 10240GB , FILEGROWTH = 10%),
( NAME = N'tpcc2', FILENAME = N'E:\Program Files\Microsoft SQL Server\MSSQL11.MSSQLSERVER\
MSSQL\Data\tpc2.ndf' , SIZE = 10240GB , FILEGROWTH = 10%)
LOG ON
( NAME = N'tpcc_log', FILENAME = N'F:\Program Files\Microsoft SQL Server\MSSQL11.MSSQLSERVER\
MSSQL\Data\tpcc_log.ldf' , SIZE = 1073741824KB , FILEGROWTH = 10%),
( NAME = N'tpcc_log1, FILENAME = N'F:\Program Files\Microsoft SQL Server\MSSQL11.
MSSQLSERVER\MSSQL\Data\tpcc_log1.ldf' , SIZE = 1073741824KB , FILEGROWTH = 10%),
( NAME = N'tpcc_log2', FILENAME = N'F:\Program Files\Microsoft SQL Server\MSSQL11.
```

```
MSSQLSERVER\MSSQL\Data\tpcc log2.ldf', SIZE = 1073741824KB, FILEGROWTH = 10%),
( NAME = N'tpcc log3', FILENAME = N'F:\Program Files\Microsoft SQL Server\MSSQL11.
MSSQLSERVER\MSSQL\Data\tpcc_log3.ldf', SIZE = 1073741824KB, FILEGROWTH = 10%),
( NAME = N'tpcc loq4', FILENAME = N'F:\Program Files\Microsoft SQL Server\MSSQL1.
MSSQLSERVER\MSSQL\Data\tpcc_log4.ldf' , SIZE = 1073741824KB , FILEGROWTH = 10%),
( NAME = N'tpcc log5', FILENAME = N'F:\Program Files\Microsoft SQL Server\MSSQL11.
MSSQLSERVER\MSSQL\Data\tpcc_log5.ldf' , SIZE = 1073741824KB , FILEGROWTH = 10%),
( NAME = N'tpcc log6', FILENAME = N'F:\Program Files\Microsoft SQL Server\MSSQL11.
MSSQLSERVER\MSSQL\Data\tpcc loq6.ldf', SIZE = 1073741824KB, FILEGROWTH = 10%)
GO
ALTER DATABASE [tpcc] SET COMPATIBILITY LEVEL = 110
GO
ALTER DATABASE [tpcc] SET ANSI NULL DEFAULT OFF
GO
ALTER DATABASE [tpcc] SET ANSI NULLS OFF
GO
ALTER DATABASE [tpcc] SET ANSI_PADDING OFF
GO
ALTER DATABASE [tpcc] SET ANSI WARNINGS OFF
GO
ALTER DATABASE [tpcc] SET ARITHABORT OFF
GO
ALTER DATABASE [tpcc] SET AUTO_CLOSE OFF
GO
ALTER DATABASE [tpcc] SET AUTO CREATE STATISTICS ON
GO
ALTER DATABASE [tpcc] SET AUTO_SHRINK OFF
GO
ALTER DATABASE [tpcc] SET AUTO_UPDATE_STATISTICS ON
GO
```

```
12 | 🛕
```

```
ALTER DATABASE [tpcc] SET CURSOR CLOSE ON COMMIT OFF
GO
ALTER DATABASE [tpcc] SET CURSOR_DEFAULT GLOBAL
GO
ALTER DATABASE [tpcc] SET CONCAT_NULL_YIELDS_NULL OFF
GO
ALTER DATABASE [tpcc] SET NUMERIC ROUNDABORT OFF
GO
ALTER DATABASE [tpcc] SET QUOTED_IDENTIFIER OFF
GO
ALTER DATABASE [tpcc] SET RECURSIVE_TRIGGERS OFF
GO
ALTER DATABASE [tpcc] SET DISABLE_BROKER
GO
ALTER DATABASE [tpcc] SET AUTO_UPDATE_STATISTICS_ASYNC OFF
GO
ALTER DATABASE [tpcc] SET DATE CORRELATION OPTIMIZATION OFF
GO
ALTER DATABASE [tpcc] SET PARAMETERIZATION SIMPLE
GO
ALTER DATABASE [tpcc] SET READ COMMITTED SNAPSHOT OFF
GO
ALTER DATABASE [tpcc] SET READ_WRITE
GO
ALTER DATABASE [tpcc] SET RECOVERY FULL
GO
ALTER DATABASE [tpcc] SET MULTI_USER
GO
ALTER DATABASE [tpcc] SET PAGE_VERIFY CHECKSUM
```

```
13 | 🖪
```

```
GO
ALTER DATABASE [tpcc] SET TARGET_RECOVERY_TIME = 0 SECONDS
GO
USE [tpcc]
GO
IF NOT EXISTS (SELECT name FROM sys.filegroups WHERE is_default=1 AND name = N'PRIMARY')
ALTER DATABASE [tpcc] MODIFY FILEGROUP [PRIMARY] DEFAULT
GO
```

Create the HammerDB Database Schema

- 1. Start the HammerDB application.
- 2. In the **Benchmark** pane, expand **SQL Server**.
- 3. Expand Schema Build, and then select Options.
- 4. Set Number of Warehouses to 1000.
- 5. Set Virtual Users to build schema to 100.
- 6. Select **OK**, and then select **Build**.

Configure the HammerDB Test

- 1. In the HammerDB window, load the preconfigured driver script.
- 2. Expand Driver Script.
- 3. Select Load.
- 4. Expand Virtual Users.
- 5. Set Virtual Users to 50.
- 6. Select the Log Output to Temp check box.
- 7. Select the User Unique Log Name check box.
- 8. Select the Log Timestamps check box.
- 9. Select OK.
- 10. Before running HammerDB, verify that you are capturing host and VM performance data.
- 11. To capture host data:
 - a. Connect to the ESXi host using SSH.
 - b. Run the following command for each test pass

esxtop -b -a -d 10 > filename.csv

- c. On the VM, start the data collector you previously configured.
- 12. Select Run to run the test.
- 13. Complete the test for 50, 100, 500, and 1,000 virtual users.

